POLA HUBUNGAN TEMPERATUR TERHADAP PEMBENTUKAN EMISI GAS METANA PADA SWABAKAR BATUBARA DI TEMPORARY STOCKPILE BANKO BARAT

  • M. Yusuf Universitas Sriwijaya
Keywords: temperatur, emisi gas metana, swabakar batubara, temporary stockpile

Abstract

Fenomena swabakar akan menurunkan kualitas dan kuantitas batubara yang menyebabkan kerugian ekonomi, sosial, dan lingkungan. Swabakar tersebut dicirikan oleh peningkatan temperatur secara perlahan sampai maksimum dan turun kembali melalui tahapan pemanasan dan pengeringan, devolatilisasi dan pirolisis, dan pembakaran arang. Tujuan penelitian mempelajari pola hubungan antara temperatur swabakar terhadap pembentukan emisi gas metana di temporary stockpile Banko Barat. Metode yang digunakan adalah survei lapangan pada hotspot swabakar di temporary stockpile Banko Barat dengan mengambil data temperatur swabakar dan emisi gas metana sebanyak 46 data menggunakan purposive sampling. Hasil korelasi dan regresi menggunakan perangkat lunak SPSS Versi 22 menunjukkan bahwa terdapat korelasi yang kuat antara temperatur swabakar dengan pembentukan emisi gas metana dengan nilai R sebesar 0,916 dengan model persamaan kuadrat Y = -0,48 + 0,014 X + (-4,019 x 10-6) X2. Kesimpulan dari penelitian menunjukkan bahwa temperatur swabakar memiliki pengaruh sangat yang kuat terhadap pembentukan pembentukan emisi gas metana pada swabakar batubara. Peningkatan temperatur yang sangat tinggi mencapai 1.742o C akan membentuk emisi gas metana sebesar 117.120 ppm. Usaha penanggulangan pembentukan emisi gas metana yang besar tersebut harus dilakukan dengan metode preventif pada swabakar batubara di temporary stockpile Banko Barat.

References

[1] Wang, H., Chen, C., (2015). Experimental Study on Greenhouse Gas Emissions Caused by Spontaneous Coal Combustion, Energy Fuels, 29, 5213-5221.

[2] Yusuf, M., Ibrahim, E., Saleh, E., Ridho, MR., Iskandar, I., (2016). The Relationship between the Decline of Oxygen and the Increase of Methane Gas (CH4) Emissions on the Environment Health of the Plant, International Journal of Collaborative Research on Internal Medicine & Public Health, 8(7), 457-464.

[3] Hidayat, S., Iskandar, T., Ludiantoro, FF., Wijayaningtyas, M., (2019). Heavy Equipment Efficiency, Productivity And Compatibility Of Coal Mine Overburden Work In East Kalimantan, International Journal of Mechanical Engineering and Technology (IJMET), 10(06), 194-202.

[4] Haeyang, P., Toshiya, T., Naoki, K., Takuo, S., Toru, H., Seiichi, Y., (2015). Evaluation of Spontaneous Combustion in Stockpile of Sub-bituminous Coal, Kobelco Technology Review, 33, 21-27.

[5] Wan-xing, R., Zeng-hui, K., De-ming, W., (2011). Causes of Spontaneous Combustion of Coal and Its Prevention Technology in The Tunnel Fall of Ground of Extra-thick Coal Seam, Procedia Engineering, 26, 717-724.

[6] Thabari, JA., Auzani, AS., Nirbito, W., Muharam, Y., Nugroho, YS., (2022). Modeling of Coal Spontaneous Fire in A Large-Scale Stockpile, International Journal of Technology, 14(2), 257-266.

[7] Yenni, FR., Heri Prabowo, H., (2021). Management Pengendalian Kualitas Batubara Berdasarkan Parameter Kualitas Batubara Mulai Dari Front Sampai Ke Stockpile Di PT. Budi Gema Gempita, Merapi Timur, Lahat, Sumatera Selatan, Jurnal Bina Tambang, 6(1), 110-120.

[8] Zakwan, H., Prabowo, H., (2021). Pengendalian Kualitas Batubara Seam 300 Berdasarkan Parameter Kualitas Batubara dari Front Sampai ke Buyer Di PT Kuansing Inti Makmur, Job Site Tanjung Belit, Bungo, Jambi, Jurnal Bina Tambang, 6(5), 68-76.

[9] Wang, F., Ji, Z., Wang, H., Chen, Y., Wang, T., Tao, R., Su, C., Niu, G., 2023. Analysis of the Current Status and Hot Technologies of Coal Spontaneous Combustion Warning, Processes, 11(2480), 1-17.

[10] Szurgacz, D., Tutak, M., Brodny, J., Sobik, L., Zhironkina, O., 2020. The Method of Combating Coal Spontaneous Combustion Hazard in Goafs - A Case Study, Energies, 13(4538), 1-22.

[11] Yusuf, M., (2023). The Role of Organic Sulfur in the Formation of Methane Emissions on the Spontaneous Combustion of Coal, Journal of Ecological Engineering, 24(4), 192-201.

[12] Muthukumar, K., Amirtham, K., Sundaramahalingam, A., (2023). Study on spontaneous combustion and environmental pollution in a coal storage yard, IOP Conf. Series: Earth and Environmental Science 1125, 012001.

[13] Bhatta, A., Priyadarshinia, S., Aiswarya Acharath Mohanakrishnana, AA., Abria, A., Sattlera, M., Techapaphawit, S., (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review, Case Studies in Construction Materials, 11, e00263.

[14] Arisanti, R., Yusuf, M., Faisal, M., (2017). Study of The Effect of Coal Quality Parameters on Gas Methane (CH4) Emission in Coal Fire for Sustainable Environment, Indones. J. Env. Man. Sus., 1(1), 19-22.

[15] Arisanti, R., Yusuf, M., Faisal, M., (2018). Study of the Effect of Proximate, Ultimate, and Calorific Value Analysis on Methane Gas Emission (CH4) on Combustion of Coal for Sustainable Environment, Science and Technology Indonesia, 3, 100-106.

[16] Xincheng Hu, X., Yu, Z., Cai, J., Jiang, X., Peng Li, P., Yang, S., (2022). The influence of methane on the development of free radical during low-temperature oxidation of coal in gob, Fuel, 330, 125369.

[17] Quraisy, A., (2020). Normalitas Data Menggunakan Uji Kolmogorov-Smirnov dan Saphiro-Wilk (Studi kasus penghasilan orang tua mahasiswa Prodi Pendidikan Matematika Unismuh Makassar), J-HEST: Journal of Healt, Education, Economics, Science, and Technology, 3(1), 7-11.

[18] Khamis, H., (2008). Measures of Association How to Choose?, Journal Of Diagnostic Medical Sonography, 24(3), 155-162.

[19] He, X., Huo, Y., Wang, W., (2021). Study on the Formation Mechanism of the Pyrolysis Products of Lignite at Different Temperatures Based on ReaxFF-MD, ACS Omega, 6, 35572−35583.

[20] Onifade, M., Genc, B., A review of research on spontaneous combustion of coal, International Journal of Mining Science and Technology, 30, 303-311.

[21] Nalbandian, H., (2010). Propensity of coal to self-heat, IEA Clean Coal Centre.

[22] Liang, Y., Yang, Y., Guo, S., Tian, F., Wang, S., (2023). Combustion mechanism and control approaches of underground coal fres: a review, International Journal of Coal Science & Technology, 10(24), 1-25.

[23] Bunga., Nugroho, W., Trides, T., Sakdillah., Magdalena, H., (2022). Studi Pencegahan Swabakar (Self Combustion) pada Stockpile di PT Baramulti Sukses Sarana, Jurnal Teknologi Mineral FT UNMUL, 1091), 38-42.

[24] Wright, DB., Herrington, JA., (2011). Problematic standard errors and confidence intervals for skewness and kurtosis, Behav Res, 43, 8-17.

[25] Wasiaturrahma., Rohmawati, H., (2021). Analysis of International Tourism Demand in Indonesia: An Ordinary Least Square (OLS) Approach, Journal of Economic Education, 10(2), 158-172.

[26] Chicco, D., Warrens, MJ., Jurman, G., (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Comput Sci. 7( e623), 1-24.

[27] Shan, W., Xu, Z., Guo, Y., Zhang, C., Hu, Z., Wang, Y., (2020). Geological methane emissions and wildfre risk in the degraded permafrost area of the Xiao Xing’an Mountains, China, Nature Research, 10(21297), 1-20.

[28] Wicaksono, RPS., Fathia, SH, Kolang, IF., Riadi, A., Nirbito, W., Muharam, Y., Nugroho, YS., (2019). Effect of The Heat Transfer Surface on Prevention of Spontaneous Combustion of Coal, International Journal of Technology 10(6), 1220-1227.
Published
2023-12-02
Section
Articles