Sintesis poliol sebagai senyawa intermediate pada pembuatan biolubricant dari minyak kelapa sawit
Abstract
Sintesis senyawa poliol sebagai bahan intermediate pada pembuatan pelumas dari minyak kelapa sawit (CPO) telah dilakukan untuk mensubstitusi pelumas dari minyak bumi. Penelitian ini bertujuan untuk mengetahui pengaruh suhu, waktu reaksi dan katalis terhadap konversi senyawa poliol yang dihasilkan dengan variabel suhu 45, 50, 55, dan 60 °C dan waktu reaksi 30, 60, 90, 120 menit serta katalis bentonit 1 %. Senyawa poliol mengandung lebih dari satu gugus hidroksil yang terbentuk dari reaksi hidroksilasi senyawa epoksi CPO dan alkohol (metanol). Senyawa epoksida CPO diperoleh dari hasil reaksi epoksidasi antara asam peroksida dengan senyawa asam asetat dengan CPO. Kualitas senyawa poliol ditentukan dari analisis densitas, bilangan asam, indeks viskositas, bilangan hidroksil, dan bilangan oksiran. Hasil penelitian menunjukkan bahwa konversi senyawa poliol tertinggi adalah 51,985 % pada 55 °C selama 120 menit. Konstanta kinetika reaksi hidroksilasi pada 55 °C adalah 0,197 mol/L menit. Senyawa poliol dari hasil sintesis dari minyak kelapa sawit telah berhasil diproduksi dan memenuhi standar SNI untuk digunakan sebagai bahan baku produksi biolubricant.
References
Cavalcanti, E. D. C., Aguieiras, É. C. G., da Silva, P. R., Duarte, J. G., Cipolatti, E. P., Fernandez-Lafuente, R., da Silva, J. A. C., Freire, D. M. G. 2018. Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel, 215, 705–713. https://doi.org/10.1016/j.fuel.2017.11.119
Chan, C. H., Tang, S. W., Mohd, N. K., Lim, W. H., Yeong, S. K., & Idris, Z. (2018). Tribological behavior of biolubricant base stocks and additives. Renew. Sustain. Energy Rev., 93, 145–157. https://doi.org/10.1016/j.rser.2018.05.024
Durango-Giraldo, G., Zapata-Hernandez, C., Santa, J. F., Buitrago-Sierra, R. 2022. Palm oil as a biolubricant: Literature review of processing parameters and tribological performance. J Ind Eng Chem, 107, 31–44. https://doi.org/10.1016/j.jiec.2021.12.018
Faujdar, E., Singh, R. K. 2021a. Methyl oleate derived multifunctional additive for polyol based lubricants. Wear, 466–467, 203550. https://doi.org/10.1016/j.wear.2020.203550
Faujdar, E., Singh, R. K. 2021b. Study on alkylated Schiff base of a triazole with 3, 5-di-tert-butyl-4-hydroxybenzaldehyde as a novel multifunctional lubricant additive. Fuel, 302, 121158. https://doi.org/10.1016/j.fuel.2021.121158
Gonzalez-Diaz, A., Pataquiva-Mateus, A., & García-Núñez, J. A. 2021. Recovery of palm phytonutrients as a potential market for the by-products generated by palm oil mills and refineries‒A review. Food Biosci., 41, 100916. https://doi.org/10.1016/j.fbio.2021.100916
Gul, M., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., & Mujtaba, M. A. 2020. A Review: Role of Fatty Acids Composition in Characterizing Potential Feedstock for Sustainable Green Lubricants by Advance Transesterification Process and its Global as Well as Pakistani Prospective. Bioenergy Res., 13(1). https://doi.org/10.1007/s12155-019-10040-7
Hemmat Esfe, M., Abbasian Arani, A. A., & Esfandeh, S. 2018. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng., 143, 493–506. https://doi.org/10.1016/j.applthermaleng.2018.07.034
Jabal, M. H., Abdulmunem, A. R., Abd, H. S. 2019. Experimental investigation of tribological characteristics and emissions with nonedible sunflower oil as a biolubricant. J Air Waste Manag Assoc, 69(1), 109–118. https://doi.org/10.1080/10962247.2018.1523070
Karmakar, G., Ghosh, P., Sharma, B. K. 2017. Chemically modifying vegetable oils to prepare green lubricants. Lubricants, 5(4), 1–17. https://doi.org/10.3390/lubricants5040044
Ma, X., Zhang, Y., Song, Z., Yu, K., He, C., Zhang, X. 2021. Enzyme-catalyzed synthesis and properties of polyol ester biolubricant produced from Rhodotorula glutinis lipid. Biochem. Eng. J., 173, 108101. https://doi.org/10.1016/j.bej.2021.108101
Mousavi, S. B., Heris, S. Z., Estellé, P. 2020. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci. Rep., 10(1), 1–17. https://doi.org/10.1038/s41598-020-62830-1
Nowak, P., Kucharska, K., & Kamiński, M. 2019. Ecological and health effects of lubricant oils emitted into the environment. Int. J. Environ. Health Res., 16(16), 1–13. https://doi.org/10.3390/ijerph16163002
Parekh, K., Shahabuddin, S., Gaur, R., Dave, N. 2022. Prospects of conducting polymer as an adsorbent for used lubricant oil reclamation. Materials Today: Proceedings, xxxx, 2–5. https://doi.org/10.1016/j.matpr.2022.01.130
Parente, E. J., Marques, J. P. C., Rios, I. C., Cecilia, J. A., Rodríguez-Castellón, E., Luna, F. M. T., Cavalcante, C. L. 2021. Production of biolubricants from soybean oil: Studies for an integrated process with the current biodiesel industry. Chem Eng Res Des, 165, 456–466. https://doi.org/10.1016/j.cherd.2020.11.012
Park, C. K., Lee, J. H., Kim, I. S., Kim, S. H. 2020. Castor oil-based polyols with gradually increasing functionalities for biopolyurethane synthesis. J. Appl. Polym. Sci., 137(4), 1–11. https://doi.org/10.1002/app.48304
Polaczek, K., Kurańska, M., Auguścik-Królikowska, M., Prociak, A., Ryszkowska, J. 2021. Open-cell polyurethane foams of very low density modified with various palm oil-based bio-polyols in accordance with cleaner production. J. Clean. Prod., 290. https://doi.org/10.1016/j.jclepro.2021.125875
Prociak, A., Malewska, E., Kurańska, M., Bąk, S., Budny, P. 2018. Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Ind Crops Prod, 115, 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008
Rios, Í. C., Cordeiro, J. P., Arruda, T. B. M. G., Rodrigues, F. E. A., Uchoa, A. F. J., Luna, F. M. T., Cavalcante, C. L., Ricardo, N. M. P. S. 2020. Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market. Ind Crops Prod, 145, 112000. https://doi.org/10.1016/j.indcrop.2019.112000
Said, M., Bobbie Rizkie Mandhala, H., Defitra, M. A., Sandi, F., Vernando, R. 2020. Synthesis of epoxide and polyol compounds as intermediates for biolubricant from soybean oil. Int. J. Adv. Sci. Eng. Inf. Technol., 10(1), 374–380. https://doi.org/10.18517/ijaseit.10.1.10463
Shafi, W. K., Raina, A., Ul Haq, M. I. 2018. Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication. Tribol. - Mater. Surf. Interfaces, 12(1), 27–43. https://doi.org/10.1080/17515831.2018.1435343
Sinaga, M. S., Simanjuntak, J. F., Winda, O. 2019. Effect of Reaction Time and Catalyst Concentration on Making of Epoxy Compounds Using Sulphuric Acid Catalyst Based on Crystallized Palm Fatty Acid Distillate. IOP Conference Series: Materials Science and Engineering, 505(1). https://doi.org/10.1088/1757-899X/505/1/012117
Sule, S., Mahmood, I., Mohammed, F. G. 2020. Synthesis of Polyol from Sponge Gourd ( Luffa aegyptiaca) Seed Oil and Production of Polyurethane Foam. United International Journal for Research & Technology, 02(02), 41–46.
Zgheib, N., & Takache, H. 2021. Recycling of used lubricating oil by solvent extraction: experimental results, Aspen Plus simulation and feasibility study. Clean Technol. Environ. Policy, 23(1), 65–76. https://doi.org/10.1007/s10098-020-01893-0
This work is licensed under a Creative Commons Attribution 4.0 International License.