Biosintesis dan karakterisasi nanopartikel tembaga oksida (CuO) menggunakan ekstrak rimpang kencur (Kaempferia galanga L.)
Abstract
Penggunaan nanopartikel telah berkembang pesat dalam berbagai bidang menyebabkan kebutuhan nanopartikel meningkat. Nanopartikel menjadi material yang banyak diminati karena memiliki banyak keunggulan jika dibandingkan dengan material jenis lain seperti raw material dan material yang berukuran lebih besar dari nanopartikel. Salah satu nanopartikel yang dikembangkan adalah nanopartikel CuO. Nanopartikel CuO umumnya disintesis dengan metode kimia dan fisika. Metode kimia dan fisika memberikan dampak negatif bagi lingkungan. Alternatif metode yang dapat digunakan adalah biosintesis. Penelitian ini bertujuan untuk melakukan biosintesis nanopartikel CuO menggunakan ekstrak rimpang kencur (Kaempferia galanga L.). Ekstrak rimpang kencur (Kaempferia galanga L.) berperan sebagai agen capping dan penstabil dalam pembentukan nanopartikel CuO. Biosintesis nanopartikel CuO berhasil dilakukan dengan ditunjukkannya puncak-puncak pada difraktogram XRD pada sudut 2θ: 32,5°; 35,5°; 38,77°; 46,3°; 48,77°; 53,48°; 58,28°; 61,55°; 66,28°; 66,28°; 68,04°; 72,44°; 75,08°; dan 82,77° dan diperoleh pita serapan FTIR pada bilangan gelombang 594 dan 469 cm-1. Hasil Penelitian menunjukkan nanopartikel CuO memiliki ukuran partikel pada pH 10, 11, dan 12 secara berturut-turut sebesar 24,04; 23,84; dan 22,68 nm dengan morfologi berbentuk lempengan serta nilai energi celah pita nanopartikel CuO yang diperoleh sebesar 5,25 eV.
References
Ajitha, B., Kumar Reddy, Y. A., Reddy, P. S., Jeon, H. J., & Ahn, C. W. (2016). Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances, 6(42), 36171–36179. https://doi.org/10.1039/c6ra03766f
Ali, H., Yesmin, R., Satter, M. A., Habib, R., & Yeasmin, T. (2018). Antioxidant and Antineoplastic Activities of Methanolic Extract of Kaempferia galanga Linn. Rhizome Against Ehrlich Ascites Carcinoma Cells. Journal of King Saud University - Science, 30(3), 386–392. https://doi.org/10.1016/j.jksus.2017.05.009
Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M., & Anjum, A. A. (2021a). Biogenic Synthesis, Characterization and Antibacterial Potential Evaluation of Copper Oxide Nanoparticles Against Escherichia coli. Nanoscale Research Letters, 16(1). https://doi.org/10.1186/s11671-021-03605-z
Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M., & Anjum, A. A. (2021b). Biogenic Synthesis, Characterization and Antibacterial Potential Evaluation of Copper Oxide Nanoparticles Against Escherichia coli. Nanoscale Research Letters, 16(1), 1–13. https://doi.org/10.1186/s11671-021-03605-z
Antony, A., & Farid, M. (2022). Effect of Temperatures on Polyphenols during Extraction. Applied Sciences, 12(4), 2107. https://doi.org/10.3390/app12042107
Asem, satyavama D., & Laitonjam, W. S. (2014). Green synthesis of Ag nanoparticles using aqueous extract of Kaempferia galanga Linn. (Zingiberaceae) rhizomes. Journal of Advances in Chemistry, 5(1), 1324–1330. http://
Buazar, F., Sweidi, S., Badri, M., & Kroushawi, F. (2019). Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach. Green Processing and Synthesis, 8(1), 691–702. https://doi.org/10.1515/gps-2019-0040
Cudennec, Y., & Lecerf, A. (2003). The transformation of Cu(OH)2 Into CuO. Solid State Sciences, 5, 1471–1474.
Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Thanh Hai, N. T., Viet, N. M., & Nguyen, V. H. (2021). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203(August 2021), 111858. https://doi.org/10.1016/j.envres.2021.111858
Dar, M. I., Chandiran, A. K., Grätzel, M., Nazeeruddin, M. K., & Shivashankar, S. A. (2014). Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2(6), 1662–1667. https://doi.org/10.1039/c3ta14130f
Dayana, K. S., Mani, R. J., & Durai, S. C. V. (2021). Morinda citrifolia leaf extract mediated green synthesis of copper oxide nanoparticles and it’s potential and antibacterial studies. Rasayan Journal of Chemistry, 14(2), 897–904. https://doi.org/10.31788/RJC.2021.1426252
Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., & Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1), 2. https://doi.org/10.1186/s42834-021-00111-w
Etefagh, R., Azhir, E., & Shahtahmasebi, N. (2013). Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica, 20(3), 1055–1058. https://doi.org/10.1016/j.scient.2013.05.015
Habib, A., Jewena, N., Shahabuddin, A. K. M., Das, S. K., Islam Khandaker, J., & Ahmed, F. (2020). Hidrothermal Synthesis Of CuO Nanoparticle And A Study On Property Variation With Synthesis Temperature. Journal of Applied and Fundamental Sciences JAFS|ISSN, 6(2), 52.
Kamarulzaman, N., Kasim, M. F., & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1034-9
Khairunnisa, S., Wonoputri, V., & Samadhi, T. W. (2021). Effective Deagglomeration in Biosynthesized Nanoparticles: A Mini Review. IOP Conference Series: Materials Science and Engineering, 1143(1), 012006. https://doi.org/10.1088/1757-899x/1143/1/012006
Koshy, J., & George, K. C. (2014). Annealing effects on crystallite size and band gap of CuO nanoparticles. International Journal of Materials Physics, 5(1), 35–42. http://www.irphouse.com
Letchumanan, D., Sok, S. P. M., Ibrahim, S., Nagoor, N. H., & Arshad, N. M. (2021). Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules, 11(4). https://doi.org/10.3390/biom11040564
Modan, E. M., & Plaiasu, A. G. (2020). Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science, 43(1), 53–60. https://doi.org/10.35219/mms.2020.1.08
More, R. D., & Janrao, D. M. (2021). Synthesis Of Cuo Nanoparticles By Green Approach Using Zingiber Officinale ( Ginger ) And Study Of Its Antimicrobial ApplicationS. 06, 3229–3232.
Narasaiah, P., Mandal, B. K., & Sarada, N. C. (2017). Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation. IOP Conference Series: Materials Science and Engineering, 263(2). https://doi.org/10.1088/1757-899X/263/2/022012
Oza, G., Calzadilla-Avila, A. I., Reyes-Calderón, A., Anna, K. K., Ramírez-Bon, R., Tapia-Ramirez, J., & Sharma, A. (2020). pH-dependent biosynthesis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Applied Nanoscience (Switzerland), 10(2), 541–550. https://doi.org/10.1007/s13204-019-01159-2
Rabiee, N., Bagherzadeh, M., Kiani, M., Ghadiri, A. M., Etessamifar, F., Jaberizadeh, A. H., & Shakeri, A. (2020). Biosynthesis of copper oxide nanoparticles with potential biomedical applications. International Journal of Nanomedicine, 15, 3983–3999. https://doi.org/10.2147/IJN.S255398
Sahoo, S., Parida, R., Singh, S., Padhy, R. N., & Nayak, S. (2014). Evaluation of yield, quality and antioxidant activity of essential oil of in vitro propagated Kaempferia galanga Linn. Journal of Acute Disease, 3(2), 124–130. https://doi.org/10.1016/s2221-6189(14)60028-7
Sharma, S., Kumar, K., Thakur, N., Chauhan, S., & Chauhan, M. S. (2021). Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. Journal of Environmental Chemical Engineering, 9(4), 105395. https://doi.org/10.1016/j.jece.2021.105395
Siddiqui, H., Qureshi, M. S., & Haque, F. Z. (2020). Biosynthesis of Flower-Shaped CuO Nanostructures and Their Photocatalytic and Antibacterial Activities. Nano-Micro Letters, 12(1), 1–11. https://doi.org/10.1007/s40820-019-0357-y
Silva, N., Ramírez, S., Díaz, I., Garcia, A., & Hassan, N. (2019). Easy, quick, and reproducible sonochemical synthesis of CuO nanoparticles. Materials, 12(5), 1–13. https://doi.org/10.3390/MA12050804
Singh, D. P., Ojha, A. K., & Srivastava, O. N. (2009). Synthesis of different Cu(OH)2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route. Journal of Physical Chemistry C, 113(9), 3409–3418. https://doi.org/10.1021/jp804832g
Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1), 1–24. https://doi.org/10.1186/s12951-018-0408-4
Sumanth Kumar, D., Jai Kumar, B., & Mahesh, H. M. (2018). Quantum Nanostructures (QDs): An Overview. In Synthesis of Inorganic Nanomaterials. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-101975-7.00003-8
Tran, T. H., & Nguyen, V. T. (2014). Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review. International Scholarly Research Notices, 2014, 1–14. https://doi.org/10.1155/2014/856592
V, N. R., & Kaladhar, D. (2012). Biochemical and Phytochemical Analysis of The Medicinal Plant, Kaempferia Galanga Rhizome Extracts. International Journal of Scientific Research, 3(1), 18–20. https://doi.org/10.15373/22778179/jan2014/6
Waris, A., Din, M., Ali, A., Ali, M., Afridi, S., Baset, A., & Ullah Khan, A. (2021). A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorganic Chemistry Communications, 123(October 2020), 108369. https://doi.org/10.1016/j.inoche.2020.108369
This work is licensed under a Creative Commons Attribution 4.0 International License.