Analisa eksperimental terhadap distribusi produk co-pyrolysis limbah sarung tangan medis dan limbah biomassa

  • Azzalya Putri Athala Program Studi Fisika, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
  • Yulia Fitri Program Studi Fisika, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
  • Wahyu Meka Program Studi Teknik Kimia, Institut Teknologi Sepuluh Nopember, Surabaya – Indonesia
  • Abrar Ridwan Program Studi Teknik Mesin, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
  • Rain A Mahendra Program Studi Teknik Mesin, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
  • Tri N Rezeki Program Studi Teknik Mesin, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
  • Laras S Widara Program Studi Fisika, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
  • Munawir Hamzah Program Studi Fisika, Universitas Muhammadiyah Riau, Pekanbaru – Indonesia
Keywords: co-pirolisis, limbah kebun, limbah kertas, limbah makanan, sarung tangan medis

Abstract

Tingginya angka penyebaran covid-19 menimbulkan dampak bagi peningkatan limbah medis secara global. Limbah medis merupakan limbah infeksius yang tergolong limbah fosil, sifatnya yang non-biodegradable dapat menyebabkan pencemaran lingkungan. Salah satu metode pengelolaan limbah yang tepat saat ini adalah pirolisis. Pada penelitian ini dilakukan co-pirolisis sarung tangan medis yang digabungkan dengan limbah biologis (limbah makanan, limbah kebun dan limbah kertas) dengan persentase massa 100:0, 25:75, 50:50, 75:25, 0:100 (%). Hasil co-pirolisis sarung tangan medis dan limbah biologis berupa produk minyak, arang dan gas. Minyak dengan kadar tertinggi dihasilkan dari co-pirolisis sarung tangan medis dan limbah kertas pada persentase massa 75:25 (%) (40%). Hasil maksimum (55%) produk arang dihasilkan dari co-pirolisis sarung tangan medis dan limbah kebun pada persentase massa 75:25 (%). Kadar tertinggi (45%) dari gas diperoleh pada penggabungan sarung tangan medis dengan limbah makanan (persentase massa 75:25 (%). Secara keseluruhan, uji co-pirolisis sarung tangan medis dan limbah biomassa dengan persentase massa sampel yang divariasikan menghasilkan produk yang diharapkan dapat membantu pengembangan energi masa mendatang

References

Abnisa, F., & Wan Daud, W. M. A. (2014). A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 87, 71–85. https://doi.org/10.1016/j.enconman.2014.07.007
Amrullah, A., Farobie, O., Septarini, S., & Satrio, J. A. (2022). Heliyon Synergetic biofuel production from co-pyrolysis of food and plastic waste : reaction kinetics and product behavior. Heliyon, 8(January), e10278. https://doi.org/10.1016/j.heliyon.2022.e10278
Aragaw, T. A., & Mekonnen, B. A. (2021). Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: a waste-to-energy conversion via Pyrolysis. Environmental Systems Research, 10(1). https://doi.org/10.1186/s40068-020-00217-x
Arunkumar, K. N., & Lingegowda, N. S. (2014). Conversion of Ldpe Plastic Waste Into Liquid Fuel By. International Journal of Mechanical And Production Engineering, 2(4), 104–107.
BBC, 2020. Covid-19: Saat miliaran masker dan sarung tangan sekali pakai berakhir di laut. BBC News Indonesia. https://www.bbc.com/indonesia/media-53335064 (accessed 18.08.22)
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Chen, W., Shi, S., Zhang, J., Chen, M., & Zhou, X. (2016). Co-pyrolysis of waste newspaper with high-density polyethylene : Synergistic effect and oil characterization. Energy Conversion and Management, 112, 41–48. https://doi.org/10.1016/j.enconman.2016.01.005
Cheng, F., & Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 72(January), 673–722. https://doi.org/10.1016/j.rser.2017.01.030
Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5(2), 122–131. https://doi.org/10.1111/gcbb.12030
Deng, N., Wang, W. W., Chen, G. W., Zhang, Y., Zhang, Y. F., & Ma, H. T. (2013). Pyrolysis characteristics of rubber compositions in medical waste. Journal of Central South University, 20(9), 2466–2471. https://doi.org/10.1007/s11771-013-1758-6
Dewi, T. U., & Ardi Nugroho, P. N. (2017). Studi Eksperimen Pengaruh Torrefaksi pada Karakteristik Bahan Bakar Padat dari Biomassa Residu Hutan. Jurnal Konversi Energi Dan Manufaktur, 4(2), 62–69. https://doi.org/10.21009/jkem.4.2.2
Dharmaraj, S., Ashokkumar, V., Pandiyan, R., Halimatul Munawaroh, H. S., Chew, K. W., Chen, W. H., & Ngamcharussrivichai, C. (2021). Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere, 275, 130092. https://doi.org/10.1016/j.chemosphere.2021.130092
Elkhalifa, S., Al-ansari, T., Mackey, H. R., & Mckay, G. (2019). Resources , Conservation & Recycling Food waste to biochars through pyrolysis : A review. Resources, Conservation & Recycling, 144(September 2018), 310–320. https://doi.org/10.1016/j.resconrec.2019.01.024
Fajar, T. (2022). RI Miliki Potensi Besar di Industri Sarung Tangan Karet. Okezone. https://economy.okezone.com/read/2019/05/07/320/2052506/ri-miliki-potensi-besar-di-industri-sarung-tangan-karet (accessed 18.08.22)
ILO. (2020). In the face of a pandemic: Ensuring Safety and Health at Work. In International labour organisation. https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---safework/documents/publication/wcms_742463.pdf%0Ahttps://www.dgs.pt/saude-ocupacional/documentos-so/oit-campanha-sst-2020-pdf.aspx
Isyakapurnama, S., Sarastri, D., & Mahardika, hega aisyah. (2021). Potensi Teknologi Pengolahan Berbasis Pirolisis dalam Penanganan Limbah Alat Pelindung Diri yang Menumpuk di Masa Pandemi Covid-19. Journal Of Reserach in Pharmacy, 1(1), 34–43.
Jain, S., Yadav Lamba, B., Kumar, S., & Singh, D. (2022). Strategy for repurposing of disposed PPE kits by production of biofuel: Pressing priority amidst COVID-19 pandemic. Biofuels, 13(5), 545–549. https://doi.org/10.1080/17597269.2020.1797350
Kim, S. W. (2015). Bioresource Technology Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis. Bioresource Technology, 175, 275–283. https://doi.org/10.1016/j.biortech.2014.10.107
Kim, S. W., Park, D. K., & Kim, S. D. (2013). Pyrolytic characteristics of Jatropha seedshell cake in thermobalance and fluidized bed reactors. Korean Journal of Chemical Engineering, 30(5), 1162–1170. https://doi.org/10.1007/s11814-013-0015-x
Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., & Ryan, J. C. (2018). Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Applied Energy, 228(July), 535–545. https://doi.org/10.1016/j.apenergy.2018.06.107
Kumar, V., Monika, K., Bharti, R., & Ali Khan, N. (2020). A Review on Corona Virus and Covid-19. International Journal of Pharmaceutical Sciences Review and Research, 65(1), 110–115. https://doi.org/10.47583/ijpsrr.2020.v65i01.016
Ly, H. V., Tran, Q. K., Kim, S. S., Kim, J., Choi, S. S., & Oh, C. (2021). Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor. Environmental Pollution, 275, 116023. https://doi.org/10.1016/j.envpol.2020.116023
Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., Artigues, A., Bartrolí, J., & García, T. (2014). Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology, 119, 263–271. https://doi.org/10.1016/j.fuproc.2013.11.015
Mishra, R. K., Iyer, J. S., & Mohanty, K. (2019). Conversion of waste biomass and waste nitrile gloves into renewable fuel. Waste Management, 89, 397–407. https://doi.org/10.1016/j.wasman.2019.04.032
Mishra, R. K., & Mohanty, K. (2020). Co-pyrolysis of waste biomass and waste plastics ( polystyrene and waste nitrile gloves ) into renewable fuel and value-added chemicals. Carbon Resources Conversion, 3(November), 145–155. https://doi.org/10.1016/j.crcon.2020.11.001
Nofiyanto, A., Soebiyakto, G., & Suwandono, P. (2019). Studi Proses Pirolisis Berbahan Jerami Padi terhadap Hasil Produksi Char dan Tar sebagai Bahan Bakar Alternatif. Proton, 11(1), 21–28
Önal, E., Uzun, B. B., & Pütün, A. E. (2014). Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Conversion and Management, 78, 704–710. https://doi.org/10.1016/j.enconman.2013.11.022
Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), 222–236. https://doi.org/10.1016/j.aoas.2019.12.006
Persi. (2021). KLHK: Pandemi Hasilkan 18 Ribu Ton Limbah Medis, PERSI Perkirakan Kenyataan di Lapangan Jauh Lebih Besar. Persi. https://persi.or.id/klhk-pandemi-hasilkan-18-ribu-ton-limbah-medis-persi-perkirakan-kenyataan-di-lapangan-jauh-lebih-besar/#:~:text=Jauh%20Lebih%20Besar-,KLHK%3A%20Pandemi%20Hasilkan%2018%20Ribu%20Ton%20Limbah%20Medis%2C%20PERSI%20Perkirakan,di%20Lapangan%20Jauh%20Lebih%20Besar&text=Sejak%20Maret%202020%20hingga%20Juni,berbahaya%20dan%20beracun%20(B3) (accessed 15.08.22)
Ridhuan, K., Irawan, D., & Inthifawzi, R. (2019). Proses Pembakaran Pirolisis dengan Jenis Biomassa dan Karakteristik Asap Cair yang Dihasilkan. Jurnal Program Studi Teknik Mesin UM Metro : Turbo, 8(1), 69–78. http://ojs.ummetro.ac.id/index.php/turbo
Samal, B., Vanapalli, K. R., Dubey, B. K., Bhattacharya, J., Chandra, S., & Medha, I. (2021). Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters. Science of the Total Environment, 794, 148723. https://doi.org/10.1016/j.scitotenv.2021.148723
Saputro, H. D., & Dwiprigitaningtias, I. (2022). Penanganan pada Limbah Infeksius (Sampah Medis) akibat Covid-19 untuk Kelestarian Lingkungan Hidup. Jurnal Dialektika Hukum, 4(1).
Satgas covid19. (2022). Data Sebaran Covid-19. https://covid19.go.id/ (accessed 15.08.22)
Sunarno, S., Randi, A., Utama, P. S., Yenti, S. R., Wisrayetti, W., & Wicakso, D. R. (2021). Improving Bio-Oil Quality Via Co-Pyrolysis Empty Fruit Bunches and Polypropilen Plastic Waste. Konversi, 10(2), 109–114. https://doi.org/10.20527/k.v10i2.11384
Syamsiro, M., Hadiyanto, A. N., & Mufrodi, Z. (2016). Rancang Bangun Mesin Pencacah Plastik Sebagai Bahan Baku Mesin Pirolisis Skala Komunal. Jurnal Mekanika Dan Sistem Termal (JMST), 1 (2)(August), 43–48. http://e-journal.janabadra.ac.id/index.php/JMST
Takele, T. N., Sundar, S., Awoke, K., Tesfaye, A., & Getu, E. (2022). Conversion of Cud and Paper Waste to Biochar Using Slow Pyrolysis Process and Effects of Parameters. SSRN Electronic Journal, 0–14. https://doi.org/10.2139/ssrn.4093732
Tang, Y., Huang, Q., Sun, K., Chi, Y., & Yan, J. (2018). Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic. Bioresource Technology, 249, 16–23. https://doi.org/10.1016/j.biortech.2017.09.210
Tanoh, T. S., Ait Oumeziane, A., Lemonon, J., Escudero Sanz, F. J., & Salvador, S. (2020). Green Waste/Wood Pellet Pyrolysis in a Pilot-Scale Rotary Kiln: Effect of Temperature on Product Distribution and Characteristics. Energy and Fuels, 34(3), 3336–3345. https://doi.org/10.1021/acs.energyfuels.9b04365
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Uddin, M. N., Daud, W. M. A. W., & Abbas, H. F. (2014). Effects of pyrolysis parameters on hydrogen formations from biomass : a review. The Royal Society of Chemistry, 4, 10467–10490. https://doi.org/10.1039/c3ra43972k
Wairata, J., Mastjeh, S., & Haryadi, W. (2013). Isolasi dan Identifikasi Senyawa Terpena Hasil Pirolisis Getah Karet Alam (Hevea Brasiliensis). Bimipa, 23(2), 124–131.
Wangsa, W., Prastyo, P., & Sumbogo, D. (2020). Konversi Limbah Sarung Tangan Lateks Laboratorium Menjadi Bahan Bakar Cair dan Pemurniannya. Jurnal Pengelolaan Laboratorium Pendidikan, 2(2), 64–72. https://doi.org/10.14710/jplp.2.2.64-72
WHO. (2022). WHO Coronavirus (COVID-19) Dashboard. WHO Health Emergency. Diakses pada 19 Agustus 2022 dari https://covid19.who.int/
Wijayanti, W., Musyaroh, M., & Sasongko, M. N. (2022). Low-Density Polyethylene Plastic Waste to Liquid Fuel Using Pyrolysis Method: An Effect of Temperatures on the Oil Yields Physicochemical Properties. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(3), 1–18. https://doi.org/10.13044/j.sdewes.d9.0402
Yuan, H., Fan, H., Shan, R., He, M., Gu, J., & Chen, Y. (2018). Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios. Energy Conversion and Management, 157(December 2017), 517–526. https://doi.org/10.1016/j.enconman.2017.12.038
Zhang, Y., Ji, G., Chen, C., Wang, Y., Wang, W., & Li, A. (2020). Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology, 206(March), 106455. https://doi.org/10.1016/j.fuproc.2020.106455
Published
2022-11-17