Produksi glukosa dari mikroalga chlorella, sp. melalui hidrolisis oleh enzim cellulase

  • Pilandari Lembono Calvin Institute of Technology, Jakarta - Indonesia
  • Mei-Jywann Syu National Cheng Kung University, Tainan - Taiwan
Keywords: Chlorella sp, reaksi hidrolisis, enzim cellulase, glukosa

Abstract

Bioetanol sebagai renewable energy dapat diproduksi dari glukosa. Glukosa untuk bioetanol dapat diproduksi dari beberapa sumber, generasi pertama adalah dari bahan pangan berupa pati, gula tebu hanya saja menyebabkan kenaikan harga bahan mentah karena bersaing dengan produk pangan. Generasi kedua adalah dari biomassa lignoselulosa seperti serbuk gergaji, pupuk, rumput yang sulit untuk diproses karena kandungan lignin yang tinggi sehingga menyebabkan biaya proses yang tinggi. Alternatif sumber glukosa adalah dari mikroalga yang memiliki produktivitas biomassa yang tinggi dan kandungan selulosa yang potensial untuk dikonversi menjadi glukosa. Selulosa dalam biomassa dapat dikonversi menjadi glukosa dengan reaksi hidrolisis enzimatik menggunakan enzim cellulase. Penelitian ini bertujuan menentukan parameter-parameter optimal dalam mengkonversi selulosa menjadi glukosa, antara lain konsentrasi enzim, temperatur, dan waktu reaksi. Biomassa diperoleh dari kultivasi mikroalga Chlorella, sp. dalam media bernutrisi, dengan aliran gas karbon dioksida dan radiasi sinar UV. Reaksi hidrolisis dilakukan dengan variasi konsentrasi enzim cellulase 1,25 – 5 mg/ml, temperatur reaksi 40-70 °C, dan waktu reaksi 8 – 60 jam. Uji kandungan glukosa dilakukan menggunakan reagen DNS dan pembacaan absorbansi oleh Spektrofotometer UV-Vis. Hasil penelitian menunjukkan konsentrasi glukosa yang tertinggi sebesar 3,07 g/L diperoleh pada reaksi hidrolisis dengan konsentrasi enzim cellulase 5 mg/ml, temperatur reaksi 55 °C, dan waktu reaksi 58 jam.

References

Arad, S. and Levy-Ontman, O., 2013. Sulfated polysaccharides in the cell wall of red microalgae, in: Thomas, S., Durand, D., Chassenieux, C. and Jyotishkumar, P. (Eds.), Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks, Wiley‐VCH Verlag GmbH & Co. KGaA, pp. 351–370.
Aravantinou, A.F., Manariotis, I.D., 2016. Effect of operating conditions on Chlorococcum sp. growth and lipid production. J. Environ. Chem. Eng., 4(1): 1217–1223.
Ashriyani, A. 2009. Pembuatan Bioetanol Dari Substrat Makroalga Genus Eucheuma dan Gracilaria. Skripsi. Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia.
Azov, Y., 1982. Effect of pH on inorganic carbon uptake in algal cultures. Applied and Environmental Microbiology, 43(6): 1300-1306.
Becker, E.W. (1994) Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge.
Bhattacharya, M. and Goswami, S., 2020. Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatal. Agric. Biotechnol., 25: 101580.
Brown, M., Jeffrey, S., Volkman, J. and Dunstan, G., 1997. Nutritional properties of microalgae for mariculture. Aquac., 151(1-4): 315-331.
Rubio, F., Camacho, F., Sevilla, J., Chisti, Y. and Grima, E., 2002. A mechanistic model of photosynthesis in microalgae. Biotechnol. Bioeng., 81(4): 459-473.
Cantwell, B. and McConnell, D., 1983. Molecular cloning and expression of a Bacillus subtilis β-glucanase gene in Escherichia coli. Gene, 23(2): 211-219.
Chandrasekhar, K., Raj, T., Ramanaiah, S., Kumar, G., Banu, J., Varjani, S., Sharma: , Pandey, A., Kumar, S. and Kim, S., 2022. Algae biorefinery: A promising approach to promote microalgae industry and waste utilization. J. Biotechnol., 345: 1-16.
Chen: , Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., Deng, S., Hennessy, K., Lin, X., Liu, Y., Wang, Y., Martinez, B., & Ruan, R. (2009). Review of the biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2(4): 1-30. https://doi.org/10.3965/j.issn.1934-6344.2009.04.001-030
Cheung, S. and Anderson, B., 1997. Laboratory investigation of ethanol production from municipal primary wastewater solids. Bioresour. Technol., 59(1): 81-96.
Chiaramonti, D. (2007). Bioethanol: role and production technologies. In: Ranalli: (Eds.) Improvement of Crop Plants for Industrial End Uses. Springer, Dordrecht: 209-251. https://doi.org/10.1007/978-1-4020-5486-0_8.
Chiu, S., Kao, C., Chen, C., Kuan, T., Ong, S. and Lin, C., 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol., 99(9): 3389-3396.
Cline, R. and Fink, R., 1956. Investigation of Color Reaction between p-Dimethylaminobenzaldehyde and Urea or Ureido Acids. Analytical Chemistry, 28(1): 47-52.
Cobos, M., Paredes, J., Maddox, J., Vargas-Arana, G., Flores, L., Aguilar, C., Marapara, J. and Castro, J., 2017. Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production. Energies, 10(2): 224.
Converse, A., Matsuno, R., Tanaka, M. and Taniguchi, M., 1988. A model of enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme. Biotechnol. Bioeng., 32(1): 38-45.
Coughlan, M. P., Ljungdahl, L. G., 1988. Comparative biochemistry of fungal and bacterial cellulolytic enzyme system. In: Aubert, J. P., Beguin, P., Millet, J., (Eds.), Biochemistry and genetics of cellulose degradation. Academic Press, New York, pp. 11-30.
de Morais, M. and Costa, J., 2007. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol., 129(3): 439-445.
de Morais, M. and Costa, J., 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7): 2169-2173.
Duff, S. and Murray, W., 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour. Technol., 55(1): 1-33.
Durand, H., Baron, M., Calmels, T., Tiraby, G., 1988. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. In: Aubert, J. P., Beguin, P., Millet, J., (Eds.), Biochemistry and genetics of cellulose degradation. Academic Press, New York, pp. 135-151.
Engler, C.R., 1985. Disruption of microbial cells in comprehensivebiotechnology. In: Moo-Young M, Cooney CL (eds) Comprehensive biotechnology. Pergamon, UK, pp. 305–324
Fan, L T, Gharpuray, M M, and Lee, Y H. 1987. Cellulose hydrolysis. Biotechnology monographs. Volume 3. United States: N. p.
Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D., 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30): 11206-11210.
Hsieh, C. and Wu, W., 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol., 100(17): 3921-3926.
Huang, X. and Penner, M., 1991. Apparent substrate inhibition of the Trichoderma reesei cellulase system. Journal of Agricultural and Food Chemistry, 39(11): 2096-2100.
Iverson, T., 2006. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Current Opinion in Chemical Biology, 10(2): 91-100.
Jacob-Lopes, E., Scoparo, C., Lacerda, L. and Franco, T., 2009. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48(1): 306-310.
Katoh, S., Horiuchi, J. and Yoshida, F., n.d. Biochemical Engineering. Chichester: Wiley-VCH.
Kim, J., Lee, J. Y., Keener, T. 2009. Growth kinetic study of Chlorella vulgaris. Department of Chemical and Materials Engineering, University of Cincinnati.
Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., Mussgnug, J.H., 2016. Efficiency and biotechnological aspects of biogas production from microalgal substrates. J. Biotechnol., 234(1): 7–26. https://doi.org/10.1016/j.jbiotec.2016.07.015
Knothe, G., 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10): 1059-1070.
Lee, J., Kim, D., Lee, J., Park, S., Koh, J., Cho, H. and Kim, S., 2002. Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour. Technol., 82(1): 1-4.
Levine, J., Leon, R. and Steigmann, F., 1961. A Rapid Method for the Determination of Urea in Blood and Urine. Clinical Chemistry, 7(5): 488-493.
Low, S., Ong, S. and Ng, H., 2014. Biodiesel production by microalgae cultivated using permeate from membrane bioreactors in continuous system. Water Sci. Technol., 69(9): 1813-1819.
Jacob-Lopes, E., Scoparo, C., Lacerda, L. and Franco, T., 2009. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48(1): 306-310.
Maia, J., Cardoso, J., Mastrantonio, D., Bierhals, C., Moreira, J., Costa, J. and Morais, M., 2020. Microalgae starch: A promising raw material for the bioethanol production. International Journal of Biological Macromolecules, 165: 2739-2749.
Mes-Hartree, M., Dale, B. and Craig, W., 1988. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Applied Microbiology and Biotechnology, 29(5): 462-468.
Molina Grima, E., Fernández, F., Garcı́a Camacho, F. and Chisti, Y., 1999. Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol., 70(1-3): 231-247.
Muhamad, S., Raehanah, S, 2004. Optimum Growth Parameters for Both Indoor and Outdoor Propagation of Microalgae, Chlorella Vulgaris and Isochrysis Galbana. PhD thesis, Universiti Putra Malaysia.
Mutanda, T., Naidoo, D., Bwapwa, J.K., Anandraj, A., 2020. Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products. Front. Energy Res., 8(1): 299.
Nagao, R., Ueno, Y., Akita, F., Suzuki, T., Dohmae, N., Akimoto, S., Shen, J.R., 2019. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynth. Res., 140(1): 141–149.
Nigam: and Singh, A., 2011. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1): 52-68.
Orpin, C. G., 1988. Genetic approaches to the improvement of lignocellulose degradation in the 52 rumen. In: Aubert, J. P., Beguin, P., Millet, J., (Eds.), Biochemistry and genetics of cellulose degradation. Academic Press, New York, pp. 171-179.
Packer, M., 2009. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 37(9): 3428-3437. doi:10.1016/j.enpol.2008.12.025.
Pagels, F., Pereira, R., Amaro, H., Vasconcelos, V., Guedes, A. and Vicente, A., 2021. Continuous pressurized extraction versus electric fields-assisted extraction of cyanobacterial pigments. J. Biotechnol., 334: 35-42.
Penner, M. H., Liaw, E.-T., 1994. Kinetic consequences of high ratios of substrate to enzyme saccharification systems based on Trichoderma cellulose, In: Himmel, M. E., Baker, J. O., Overend, R. P., (Eds.), Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC., pp. 363-371.
Puspawati, S., Wagimana , Ainuri, M., Nugraha, D.A., Haslianti. 2015. The Production of Bioethanol Fermentation Substrate from Eucheuma cottonii Seaweed through Hydrolysis by Cellulose Enzyme, ICoA Agriculture and Agricultural Science Procedia, vol. 3, pp: 200 – 205.
Queiroz, M., Lopes, E., Zepka, L., Bastos, R. and Goldbeck, R., 2007. The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresour. Technol., 98(11): 2163-2169.
Ren, Q., Wang, Y., Lin, Y., Zhen, Z., Cui, Y. and Qin, S., 2021. The extremely large chloroplast genome of the green alga Haematococcus pluvialis: Genome structure, and comparative analysis. Algal Research, 56: 102308.
Renaud, S., Thinh, L., Lambrinidis, G. and Parry, D., 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquac., 211(1-4): 195-214.
Reshma, R., Chitra Devi, K., Dinesh Kumar, S., Santhanam: , Perumal: , Krishnaveni, N., Begum, A., Pragnya, M., Arthikha, R., Dhanalakshmi, B., Kim, M.K., 2021. Enhancement of pigments production in the green microalga Dunaliella salina (PSBDU05) under optimized culture condition. Bioresour. Technol. Rep., 14: 100672.
Rocha, J., Garcia, J. and Henriques, M., 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomolecular Engineering, 20(4-6): 237-242.
Rosyida, V., Indrianingsih, A., Maryana, R. and Wahono, S., 2015. Effect of Temperature and Fermentation Time of Crude Cellulase Production by Trichoderma Reesei on Straw Substrate. Energy Procedia, 65: 368-371.
Sharma, P. and Sharma, N., 2017. Industrial and Biotechnological Applications of Algae: A Review. Journal of Advances in Plant Biology, 1(1): 1-25. https://doi.org/10.14302/issn.2638-4469.japb-17-1534.
Sternberg, D. 1976. Production of cellulase by Trichoderma. Biotechnology and Bioengineering symposium, 6, 35-53 .
Subhadra, B., Edwards, M. 2010. An integrated renewable energy park approach for algal biofuel production in United States, Energy Policy, 38(9): 4897-4902.
Sun, Y. and Cheng, J., 2002. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol., 83(1): 1-11.
Taherzadeh, M. and Karimi, K., 2008. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 9(9): 1621-1651.
Toro, J., 1989. The growth rate of two species of microalgae used in shellfish hatcheries cultured under two light regimes. Aquac. Research, 20(3): 249-254.
Tsarpali, M., Arora, N., Kuhn, J.N., Philippidis, G.P., 2021. Lipid-extracted algae as a source of biomaterials for algae biorefineries. Algal Res. 57(1): 102354. https://doi.org/ 10.1016/j.algal.2021.102354.
Ueda, R., et.al., (1996), Process for the production of ethanol from microalgae, US Patent 5, 578, 472.
Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D., Santas: , Santas, R. and Corleti, V., 2007. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol., 98(2): 296-301.
Widjaja, A., Chien, C. and Ju, Y., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1): 13-20.
Xu, K., Zou, X., Chang, W., Qu, Y. and Li, Y., 2021. Microalgae harvesting technique using ballasted flotation: A review. Separation and Purification Technology, 276: 119439.
Xu, N., Zhang, X., Fan, X., Han, L., Zeng, C., 2001. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). Journal of Applied Phycology, 13: 463-469.
Yoon, J., Kim, Y., Kim, S., Ryu, H., Choi, J., Kim, G. and Shin, M., 2010. Production of Polysaccharides and Corresponding Sugars from Red Seaweed. Advanced Materials Research, 93-94: 463-466.
Yun, Y., Lee, S., Park, J., Lee, C. and Yang, J., 1997. Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients. Journal of Chemical Technology & Biotechnology, 69(4): 451-455.
Zak, E., Norling, B., Maitra, R., Huang, F., Andersson, B. and Pakrasi, H., 2001. The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proceedings of the National Academy of Sciences, 98(23): 13443-13448.
Published
2023-07-31