Analysis of coconut shell adsorption capability as greywater waste adsorbent

  • Devy Cendekia Department of Agricultural Technology, Industrial Chemical Engineering Technology, Lampung State Polytechnic, Lampung – Indonesia
  • Dian A Afifah Department of Agricultural Technology, Industrial Chemical Engineering Technology, Lampung State Polytechnic, Lampung – Indonesia
Keywords: adsorbent, coconut shell, greywater, iodine, langmuir

Abstract

As coconut plantations increase in Indonesia, coconut shell waste has the potential to damage the environment if it is not processed properly. Various studies state that coconut shell waste can be used as a greywater adsorbent. Greywater is a domestic waste that is much less polluted than domestic wastewater because it does not contain urine, feces, and toilet paper, and only contains about 30% of the total organic load. Therefore, it is important to determine the right adsorbent for appropriate processing. So this research will test the adsorption capacity of coconut shell waste as a greywater adsorbent using iodine absorption analysis. In the analysis of iodine absorption capacity, coconut shell adsorbents have high adsorption capabilities in absorbing adsorbate (iodine molecules) with high molecular concentrations. Based on iodine absorption analysis data, it is known that the coconut shell waste adsorbent has a maximum adsorption capacity of 2.86 x 10-3 mg g-1 by following the Langmuir isotherm model. The coconut shell waste adsorbent used as a medium in the adsorption column was able to reduce total dissolved solids by 3.7 %, total suspended solids by 23.3 %, and phosphate removal efficiency by 6.3 % in greywater waste samples. This proves that coconut shell waste can act as an adsorbent in managing greywater waste.

References

Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393(February), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Alsulaili, A. D., & Hamoda, M. F. (2015). Quantification and characterization of greywater from schools. Water Science and Technology, 72(11), 1973–1980. https://doi.org/10.2166/wst.2015.408
Azizian, S., Eris, S., & Wilson, L. D. (2018). Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chemical Physics, 513(May), 99–104. https://doi.org/10.1016/j.chemphys.2018.06.022
Bimantio, M. P., & Ferhat, A. (2022). Optimasi konfigurasi kolom adsorpsi portabel tersirkulasi pada proses pemurnian air tanah karst. Jurnal Teknik Kimia, 28(1), 20–27. https://doi.org/10.36706/jtk.v28i1.858
Cendekia, D., Afifah, D. A., Variyana, Y., & Karlina, E. (2024). Kinetic Analysis Of Phosphate Adsorption On Zeolite And Activated Carbon In Greywater. Inovasi Teknik Kimia, 9(1), 9–16.
Cendekia, D., Ayu Afifah, D., & Hanifah, W. (2021). Linearity Graph in the Prediction of Granular Active Carbon (GAC) Adsorption Ability. IOP Conference Series: Earth and Environmental Science, 1012(1). https://doi.org/10.1088/1755-1315/1012/1/012079
Hadiah, F., Meliasari, T., Raya Palembang Prabumulih Km, J., & Ogan Ilir, I. (2020). Pemurnian Minyak Jelantah dengan Menggunakan Adsorben Serbuk Biji Kelor Tanpa Karbonisasi dan Bentonit. Jurnal Teknik Kimia, 26(1).
Isa, I., Musa, W. J. A., & Rahma, S. W. (2019). Pemanfaatan Asap Cair Tempurung Kelapa Sebagai Pestisida Organik Terhadap Mortalitas Ulat Grayak (Spodoptera Litura F.). Jambura Journal of Chemistry, 1(1), 15–20. https://doi.org/10.34312/jambchem.v1i1.2102
Ismiyati, M., Setyowati, D. N., & Nengse, S. (2021). Pembuatan Bioadsorben Dari Sabut Kelapa Dan Tempurung Kelapa Untuk Menurunkan Kadar Besi (Fe). Jukung Jurnal Teknik Lingkungan, 7(1), 33–45.
Kadang, M.R.A.M., Anas, M., Mongkito, V. H. R. M. (2020). Efek Variasi Konsentrasi Zat Aktivator H 3 PO 4 Terhadap Daya Serap Karbon Aktif Cangkang Kemiri. 5(4), 328–333.
Muhammad. (2014). Penyerapan Β-Karoten Menggunakan Karbon Aktif Tempurung Kelapa Sawit: Kajian Kinetika. Jurnal Teknologi Kimia Unimal, 3(2), 53–63.
Mu’in, R., Wulandari, S., & Pertiwi, N. P. (2017). Pengaruh kecepatan pengadukan dan massa adsorben terhadap penurunan kadar phospat pada pengolahan limbah laundry. Jurnal Teknik Kimia, 23(1).
Nurhidayanti, N., Ardiatma, D., & Anggriawan, B. (2020). Pemanfaatan Karbon Aktif Dari Tempurung Kelapa Dalam Menurunkan Kadar Amonia Total Dalam Air Limbah Industri. Jurnal Pelita Teknologi, 15(1), 68–76.
Nustini, Y., & Allwar, A. (2019). Pemanfaatan Limbah Tempurung Kelapa Menjadi Arang Tempurung Kelapa Dan Granu. Prosiding Seminar Nasional Mewujudkan Masyarakat Madani Dan Lestari Seri 9, 172–183.
Rangabhashiyam, S., Anu, N., Giri Nandagopal, M. S., & Selvaraju, N. (2014). Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. In Journal of Environmental Chemical Engineering (Vol. 2, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.jece.2014.01.014
Reni Yenti, S., Fadli, A., Fifiyana, R., & Sari, M. (2018). Model Kesetimbangan Freundlich Pada Adsorpsi Ion Kadmium Menggunakan Hidroksiapatit. Prosiding Seminar Nasional Fisika Universitas Riauke-3, 106–113.
Shaikh, I. N., & Ahammed, M. M. (2020). Quantity and quality characteristics of greywater: A review. Journal of Environmental Management, 261. https://doi.org/10.1016/j.jenvman.2020.110266
Silvia, L., Darminto, D., Purwanto, A., Astuti, F., & Zainuri, M. (2021). Pemanfaatan Karbon Aktif Tempurung Kelapa sebagai Media Filtrasi Air di Desa Sumberwudi Lamongan. Sewagati, 5(2), 170. https://doi.org/10.12962/j26139960.v5i2.8063
Spychala, M., Nieć, J., Zawadzki, P., Matz, R., & Nguyen, T. H. (2019). Removal of volatile solids from greywater using sand filters. Applied Sciences (Switzerland), 9(4). https://doi.org/10.3390/app9040770
Sulaiman, N. H., Malau, L.A., Lubis, F. H., Harahap, N. B., Manalu, F. R., Kembaren, A. (2018). Pengolahan Tempurung Kemiri Sebagai Karbon Aktif Dengan Variasi Aktivator Asam Fosfat. Einstein E-Journal, 5(2), 37–41. https://doi.org/10.24114/einstein.v5i2.11841
Susmanto, P., Yandriani, Y., Dila, A. P., & Pratiwi, D. R. (2020). Pengolahan Zat Warna Direk Limbah Cair Industri Jumputan Menggunakan Karbon Aktif Limbah Tempurung Kelapa pada Kolom Adsorpsi. JRST (Jurnal Riset Sains Dan Teknologi), 4(2), 77. https://doi.org/10.30595/jrst.v4i2.7309
Syauqiah, I., Amalia, M., & Kartini, H. A. (2011). Analisis Variasi Waktu dan Kecepatan Pengadukan pada Proses Adsorpsi Limbah Logam Berat dengan Arang Aktif Dalam limbah cuci foto. Info Teknik, 12(1), 11–20.
Wijayanti, I. E., & Kurniawati, E. A. (2019). Studi Kinetika Adsorpsi Isoterm Persamaan Langmuir dan Freundlich pada Abu Gosok sebagai Adsorben. EduChemia (Jurnal Kimia Dan Pendidikan), 4(2), 175. https://doi.org/10.30870/educhemia.v4i2.6119
Yuliani, R. L., Purwanti, E., & Pantiwati, Y. (2015). Effect of Waste Laundry Detergent Industry Against Mortality and Physiology Index of Nile Tilapia (Oreochromis Niloticus). Seminar Nasional XII Pendidikan Biologi FKIP UNS, 822–828. https://www.neliti.com/publications/176111/effect-of-waste-laundry-detergent-industry-against-mortality-and-physiology-inde
Published
2024-03-31