Potensi dan karakteristik abu tandan kosong kelapa sawit sebagai katalis heterogen untuk produksi biodiesel

  • R.A Dwi Putri Ananda Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Palembang-Indonesia
  • Leily Nurul Komariah Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Palembang-Indonesia
  • Novy Pralisa Putri Chemical Engineering Department Faculty of Engineering, Universitas Mulawarman, Samarinda, Indonesia
  • Susila Arita Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Palembang-Indonesia
Keywords: Abu Sawit, Biodiesel, Tandan Kosong Kelapa Sawit

Abstract

Tandan Kosong Kelapa Sawit (TKKS) merupakan limbah padat dengan volume yang cukup besar dari produksi kelapa sawit. Dari total 24,25% TKKS yang dihasilkan, saat ini pemanfaatan limbahnya masih jauh dari potensinya sekitar 95,45 ton/ tahun yang dihasilkan tidak dimanfaatkan dengan baik. Tandan kosong kelapa sawit dapat dikonversi menjadi abu yang siap dipakai untuk proses produksi biodisel melalui reaksi transesterifikasi. Hasil Uji karakteristik menunjukkan bahwa abu TKKS dapat menjadi katalis yang potensial karena menunjukkan kadar kalium mencapai 48,25% . Partikel katalis memiliki cross section area 16.2 A2/mol dengan luas permukaan 0,012 m2/g dan total volume pori katalis 0,007674 cc/g. Dalam kajian ini juga dilakukan proyeksi ketersediaan TKKS dari perkebunan sawit dan dikorelasikan dengan proyeksi kebutuhan katalis untuk industri biodiesel. Setiap tahun diperkirakan sedikitnya terdapat 15,5 juta ton TKKS yang dapat dikonversi menjadi abu sawit melalui proses torefaksi dan sejenisnya. Kebijakan penggunaan biodisel B35 di tahun 2023 diperkirakan akan meningkatkan volume produksi biodisel sampai 13,5 juta kL. Dengan demikian diperkirakan kebutuhan katalis komersial mencapai 120-140 ribu ton per tahun. Melalui neraca massa TKKS menjadi katalis abu TKKS, dimungkinkan tersedia 2,33 juta ton abu TKKS untuk dimanfaatkan sebagai katalis produksi biodiesel. Neraca massa konversi TKKS menjadi abu menunjukkan bahwa 15%-b abu yang siap dipakai menjadi katalis dapat dihasilkan dari setiap ton TKKS. 

References

Amrullah, M., Mardawati, E., Kastaman, R., & Suryaningsih, S. (2020). Study of bio-briquette formulation from mixture palm oil empty fruit bunches and palm oil shells. IOP Conference Series: Earth and Environmental Science, 443(1).
https://doi.org/10.1088/17551315/443/1/012079
Anyaoha, K. E., Sakrabani, R., Patchigolla, K., & Mouazen, A. M. (2018). Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resources, Conservation and Recycling, 136(January), 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022
Arfiana, Finalis, E. R., Noor, I., Sumbogo Murti, S. D., Suratno, H., Rosyadi, E., Saputra, H., & Noda, R. (2021). Oil palm empty fruit bunch ash as a potassium source in the synthesis of NPK fertilizer. IOP Conference Series: Earth and Environmental Science, 749(1). https://doi.org/10.1088/1755-1315/749/1/012038
Balajii, M., & Niju, S. (2019). A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production – Process optimization using central composite design. Energy Conversion and Management, 189(December 2018), 118–131. https://doi.org/10.1016/j.enconman.2019.03.085
BPS. (2020). Catalog : 1101001. Statistik Indonesia 2020, 1101001, 790. https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
Derman, E., Abdulla, R., Marbawi, H., & Sabullah, M. K. (2018). Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renewable Energy, 129, 285–298. https://doi.org/10.1016/j.renene.2018.06.003
Ditjen Perkebunan Kementerian Pertanian. (2022). Statistik Perkebunan Unggulan Nasional. Statistik Perkebunan Unggulan Nasional; Ditjen Perkebunan Kementerian Pertanian(2022), 5(3), 248–253.
Fadzilah, R., Rashid, U., Lokman, M., Hazmi, B., Alharthi, A., & Arbi, I. (2021). Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews, 137(November 2020), 110638. https://doi.org/10.1016/j.rser.2020.110638
Foroutan, R., Mohammadi, R., Razeghi, J., & Ramavandi, B. (2021). Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst. Renewable Energy, 168, 1207–1216. https://doi.org/10.1016/j.renene.2020.12.094
Gab-Allah, M. A., Goda, E. S., Shehata, A. B., & Gamal, H. (2020). Critical Review on the Analytical Methods for the Determination of Sulfur and Trace Elements in Crude Oil. Critical Reviews in Analytical Chemistry, 50(2), 161–178. https://doi.org/10.1080/10408347.2019.1599278
Hamza, M., Ayoub, M., Shamsuddin, R. Bin, Mukhtar, A., Saqib, S., Zahid, I., Ameen, M., Ullah, S., Al-sehemi, A. G., & Ibrahim, M. (2020). Jou rna lP. Environmental Technology & Innovation, 101200. https://doi.org/10.1016/j.eti.2020.101200
Indriati, L., Elyani, N., & Dina, S. F. (2020). Empty fruit bunches, potential fiber source for Indonesian pulp and paper industry. IOP Conference Series: Materials Science and Engineering, 980(1). https://doi.org/10.1088/1757-899X/980/1/012045
Ishfaq, R., Ruslan, N. N., Jikan, S. S., Ameruddin, A. S., & Attan, N. (2022). Synthesis and Characterization of Metal Sulfates Loaded Palm Empty Fruit Bunch (PEFB) for Biodiesel Production. Sains Malaysiana, 51(2), 519–532. https://doi.org/10.17576/jsm-2022-5102-16
Jalalmanesh, S., Kazemeini, M., Rahmani, M. H., & Zehtab Salmasi, M. (2021). Biodiesel Production from Sunflower Oil Using K2CO3 Impregnated Kaolin Novel Solid Base Catalyst. JAOCS, Journal of the American Oil Chemists’ Society, 98(6), 633–642. https://doi.org/10.1002/aocs.12486
Karine, E., Mares, L., Arrais, M., Teresa, P., & Rafael, L. (2021). Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis : Optimization of the biodiesel production process. 299(December 2020). https://doi.org/10.1016/j.fuel.2021.120887
Kasparbauer, R. D. (2009). The Effects of Biomass Pretreatments on the Products of Fast Pyrolysis. 1–294.
Lim, S., Yi, Y. C., Ling, P. Y., & Huei, W. K. (2019). ur na l P of. Journal of Hazardous Materials, 121532. https://doi.org/10.1016/j.jhazmat.2019.121532
Montoya, J., Valdés, C., Chaquea, H., Pecha, M. B., & Chejne, F. (2020). Surplus electricity production and LCOE estimation in Colombian palm oil mills using empty fresh bunches (EFB) as fuel. Energy, 202. https://doi.org/10.1016/j.energy.2020.117713
Mustapha, R., Ali, A., Subramaniam, G., Zuki, A. A. A., Awang, M., Harun, M. H. C., & Hamzah, S. (2021). Removal of malachite green dye using oil palm empty fruit bunch as a low-cost adsorbent. Biointerface Research in Applied Chemistry, 11(6), 14998–15008. https://doi.org/10.33263/BRIAC116.1499815008
Nam, H., & Capareda, S. (2015). Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology). Energy, 91, 507–516. https://doi.org/10.1016/j.energy.2015.08.064
Nurdin, M., Abimanyu, H., Putriani, H., Setiawan, L. O. M. I., Maulidiyah, M., Wibowo, D., Ansharullah, A., Natsir, M., Salim, L. O. A., Arham, Z., & Mustapa, F. (2021). Optimization of OPEFB lignocellulose transformation process through ionic liquid [TEA][HSO4] based pretreatment. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90891-3
Okoye, P. U., Wang, S., Xu, L., Li, S., Wang, J., & Zhang, L. (2019). Promotional effect of calcination temperature on structural evolution, basicity, and activity of oil palm empty fruit bunch derived catalyst for glycerol carbonate synthesis. Energy Conversion and Management, 179(September 2018), 192–200. https://doi.org/10.1016/j.enconman.2018.10.013
Putra, M. D., Ristianingsih, Y., Jelita, R., Irawan, C., & Nata, I. F. (2017). Potential waste from palm empty fruit bunches and eggshells as a heterogeneous catalyst for biodiesel production. RSC Advances, 7(87), 55547–55554. https://doi.org/10.1039/c7ra11031f
Rehman, S., Khairul Islam, M., Khalid Khanzada, N., Kyoungjin An, A., Chaiprapat, S., & Leu, S. Y. (2021). Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2. Bioresource Technology, 333(April), 125206. https://doi.org/10.1016/j.biortech.2021.125206
Rezki, B., Essamlali, Y., Aadil, M., Semlal, N., & Zahouily, M. (2020). Biodiesel production from rapeseed oil and low free fatty acid waste cooking oil using a cesium modified natural phosphate catalyst. RSC Advances, 10(67), 41065–41077. https://doi.org/10.1039/d0ra07711a
Sibarani, J., Khairil, S., Yoeswono, Wijaya, K., Tahir, I., BPPT, Rahardja, I. B., Sukarman, Ramadhan, A. I., Ritonga, M. Y., Ruben, M., Giovani, R., Omotoso, M. A., Akinsanoye, O. A., Husin, H., Abubakar, A., Ramadhani, S., Sijabat, C. F. B., Hasfita, F., … Taufiq-Yap, Y. H. (2020). Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Conversion and Management, 5(1), 1–12. https://doi.org/10.1051/matecconf/201819709008
Sukiran, M. A., Abnisa, F., Syafiie, S., Wan Daud, W. M. A., Nasrin, A. B., Abdul Aziz, A., & Loh, S. K. (2020). Experimental and modelling study of the torrefaction of empty fruit bunches as a potential fuel for palm oil mill boilers. Biomass and Bioenergy, 136(February), 105530. https://doi.org/10.1016/j.biombioe.2020.105530
Suksong, W., Wongfaed, N., Sangsri, B., Kongjan, P., Prasertsan, P., Podmirseg, S. M., Insam, H., & O-Thong, S. (2020). Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. Industrial Crops and Products, 145(June 2019), 112099. https://doi.org/10.1016/j.indcrop.2020.112099
Supriatna, J., Setiawati, M. R., Sudirja, R., Suherman, C., & Bonneau, X. (2022). Composting for a More Sustainable Palm Oil Waste Management: A Systematic Literature Review. The Scientific World Journal, 2022, 1–20. https://doi.org/10.1155/2022/5073059
Susanto, J. P., Santoso, A. D., & Suwedi, N. (2017). Perhitungan Potensi Limbah Padat Kelapa Sawit untuk Sumber Energi Terbaharukan dengan Metode LCA. Jurnal Teknologi Lingkungan, 18(2), 165. https://doi.org/10.29122/jtl.v18i2.2046
Tan, Y. H., Mujawar, M. N., & Kansedo, J. (2019). ur na l P. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.09.022
Yanti, R. N., Ratnaningsih, A. T., & Ikhsani, H. (2022). Pembuatan bio-briket dari produk pirolisis biochar cangkang kelapa sawit sebagai sumber energi alternatif. Jurnal Ilmiah Pertanian, 19(1), 11–18. https://doi.org/10.31849/jip.v19i1.7815
Yue, Y., Singh, H., Singh, B., & Mani, S. (2017). Torrefaction of sorghum biomass to improve fuel properties. Bioresource Technology, 232(February), 372–379. https://doi.org/10.1016/j.biortech.2017.02.060
Published
2023-03-01