The Effect of electrolyte concentration and temperature at electroplating with copper on the plate thickness and corrosion rate of plated gray cast iron

  • Muhammad Iksanudin Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Semarang, Indonesia
  • Rahmad D. Widodo Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Semarang, Indonesia
  • Deni F. Fitriyana Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Semarang, Indonesia
  • Ayub B. Anggoro Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Semarang, Indonesia
Keywords: gray cast iron, copper electroplating, concentration, corrosion rate, temperature

Abstract

This study aims to determine the effect of variations in electrolyte solution concentration and copper electroplating temperature on gray cast iron to achieve the desired copper layer thickness and reduce the corrosion rate of gray cast iron impeller pumps. A total of 30 test specimens made from gray cast iron were used, with dimensions conforming to the ASTM G31-72 standard for corrosion rate testing. The specimens were coated with copper electroplating using three different solutions: solution 1 (195 g/L copper sulfate, 45 g/L sulfuric acid), solution 2 (205 g/L copper sulfate, 50 g/L sulfuric acid), and solution 3 (215 g/L copper sulfate, 55 g/L sulfuric acid). Each solution was used with dipping temperatures of 30 – 34 °C, 40 – 44 °C, and 50 – 54 °C. After being coated with copper, the layer thickness was measured using a digital coating thickness gauge (F&NF type). The corrosion rate was then tested using the weight loss method, following the ASTM G31-72 standard, by immersing the specimens in seawater for 240 hours. The test results showed that the highest average thickness was achieved with solution 3 and a plating temperature of 50 – 54 °C, measuring 27.46 μm. The lowest average thickness was with solution 1 and a plating temperature of 30 – 34 °C, measuring 26.23 μm. The lowest corrosion rate was observed with solution 3 and a plating temperature of 50 – 54 °C, at 0.0041 mmpy, whereas the highest corrosion rate was found with solution 1 and a plating temperature of 30 – 34 °C, at 0.0079 mmpy. For comparison, the average corrosion rate of uncoated specimens was 2.2947 mmpy.

References

Abraham, O. F., Oloruntoba, D. T., Damilola, A. D., Fesomade, K. I., Ugoh, M. C., & Damilola, A. O. 2022. Electrochemical and weight loss studies of the corrosion profiles of gray cast iron under the influence of water hyacinth plant extract in 0.5 M NaOH. Chemical Data Collections, 42, 100951. https://doi.org/10.1016/j.cdc.2022.100951
Afriando. 2018. Pengaruh Waktu Dan Temperatur Larutan Pada Proses (Electroplating) Tembaga Di Permukaan Baja Terhadap Kekerasan Dan Ketebalan Lapisan. Universitas Andalas.
ASTM Internasional. 2004. ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals: Vol. 03.02 (1st ed.). ASTM Internasional. https://doi.org/10.1520/G0031-72R04
ASTM International. 2004. ASTM A 48/A 48M–03: Standard Specification for Gray Iron. ASTM Internasional. Castings: Vol. 01.02 (1st ed.). ASTM International. https://doi.org/10.31399/asm.hb.v15.a0005323
Child, R., 1993. Metal Plating and Patination: Chapter 24 - Modern Electroplating and Electrofinishing Techniques. In Metal Plating and Patination (pp. 291–300). Elsevier. https://doi.org/10.1016/B978-0-7506-1611-9.50028-5
Dwiyati, S. T., & Pangestu, M. T. 2022. Mass Loss of Copper-Nickel/Copper-Nickel-Silicon Films in HCl Solution, 7(1), 27-34. https://doi.org/10.21009/JKEM.7.1.4
Fauji, N. 2021. Pengaruh Kuat Arus dan Waktu Elektroplating Nikel terhadap Kekerasan dan Laju Korosi Baja. Jurnal Rekayasa Mesin, 16(2), 172-180. http://dx.doi.org/10.32497/jrm.v16i2.2461
Hardiyanti, F., & Santoso, M. Y. (2018). Analisis Pelapisan Tembaga Terhadap Laju Korosi Dan Struktur Mikro Grey Cast Iron. Jurnal Teknologi Maritim, 1(1), 37–42. https://doi.org/10.35991/jtm.v1i1.423
Iyasu, T., Kuratani, M., Ikeda, I., Tanaka, N., Yamada, Y., & Sakurada, O. 2020. A Study of Water Treatment Chemical Effects on Type I” Pitting Corrosion of Copper Tubes. Materials Sciences and Applications, 11(07), 494. https://doi.org/10.4236/msa.2020.117034
Jaramillo-Gutiérrez, M. I., Sierra-González, S. M., Ramírez-González, C. A., Pedraza-Rosas, J. E., & Pedraza-Avella, J. A. 2021. Effect Of Electrodeposition Parameters and Surface Pretreatment on The Electrochemical Hydrogen Production Using Nickel-Plated Stainless-Steel Electrodes. International Journal of Hydrogen Energy, 46(11), 7667–7675. https://doi.org/10.1016/j.ijhydene.2019.09.205
Jejen Jaelani. 2021. Analisis Kegagalan Impeller Pompa Sentrifugal Pada Proses Pengolahan Air Limbah Di Industri Tekstil. Universitas Pasundan. http://repository.unpas.ac.id/id/eprint/54766
Kanani, N. 2004. Electroplating: basic principles, processes, and practice. Elsevier. https://doi.org/10.1016/B978-1-85617-451-0.X5000-3
Li, M., & Zinkle, S. J. 2012. Physical And Mechanical Properties of Copper and Copper Alloys. Comprehensive Nuclear Materials, 667–690. https://10.1016/B978-0-08-056033-5.00122-1
Li, Y., Li, X., Jin, K., Wang, C., Guo, W., Tian, K., & Wang, H. 2022. Enduring effect mechanism of Co (Ni) layers on excellent microwave absorption performance of carbonyl iron in seawater. Journal of Magnetism and Magnetic Materials, 564, 170202. https://doi.org/10.1016/j.jmmm.2022.170202
Malhotra, N., Ger, T.R., Uapipatanakul, B., Huang, J.-C., Chen, K. H.-C., & Hsiao, C.-D. 2020. Review Of Copper and Copper Nanoparticle Toxicity in Fish. Nanomaterials, 10(6), 1126. https://doi.org/10.3390/nano10061126
Pamungkas, A. S., Prasetyo, H., & Mulyaningsih, N. 2018. Pengaruh Variasi Temperatur Elektroplating Terhadap Ketebalan Lapisan Nikel Baja ST37. Jurnal Teknik Mesin MERC (Mechanical Engineering Research Collection), 1(1).
Patty, S. I., Rizki, M. P., Rifai, H., & Akbar, N. 2019. Kajian Kualitas Air dan Indeks Pencemaran Perairan Laut di Teluk Manado Ditinjau Dari Parameter Fisika-Kimia Air Laut. Jurnal Ilmu Kelautan Kepulauan, 2(2). http://dx.doi.org/10.33387/jikk.v2i2.1387
Prabowo, A. E., Rarindo, H., Hadi, S., Sujatmiko, A., & Hardjito, A. 2021. Effect Of Electroplating Voltage and Time Of Copper And Nickel On Corrosion Rate In Low Carbon Steel. Jurnal Teknologi, 15(2), 14–20. https://ejurnal.undana.ac.id/index.php/jurnal_teknologi/article/view/5722
Pratiwi, V. M., Sulistijono, S., Hidayat, M. I. P., & Zuniandra, H. 2020. Pengaruh Variasi Waktu dan Temperatur Elektroplating Seng Terhadap Ketebalan, Kekuatan Lekat dan Ketahanan Korosi pada Baja. Jurnal Teknik ITS, 8(2), F218–F223. http://doi.org/10.12962/j23373539.v8i2.50068
Singh, R. 2020. Applied Welding Engineering: Chapter 7 - Cast iron and cast steel. In R. Singh (Ed.), Applied Welding Engineering (Third Edition) (pp. 61–76). Butterworth-Heinemann. https://doi.org/10.1016/C2019-0-03490-5
Sumpena, S., & Wardoyo, W. 2021. Analisa Kuat Arus Listrik dan Waktu Electroplating Nickel-Chrome terhadap Kekerasan dan Ketebalan Lapisan Permukaan Baja Karbon Rendah. Jurnal Engine: Energi, Manufaktur, Dan Material, 4(2), 96–102. http://dx.doi.org/10.30588/jeemm.v4i2.809
Supriyatna, Y. I., Noviyana, R., Suka, E. G., Kambuna, B. N. H., & Sumardi, S. 2021. Influence Of Current Density in Cu-Mn Electroplating of AISI 1020 Steel Corrosion Rate. Materials Today: Proceedings, 44, 3289–3295. https://doi.org/10.1016/j.matpr.2020.11.529
Syamsuir, S., Fajar, H., Widodo, K., & Sopiyan, S. 2019. Efek Pengadukan Saat Pelapisan Tembaga Pada Alumunium Terhadap Laju Korosi. Jurnal Konversi Energi Dan Manufaktur, 6(1), 354394. https://doi.org/10.21009/JKEM.6.1.8
Toifur, M., Yuningsih, Y., & Khusnani, A. 2019. Microstructure, Thickness and Sheet Resistivity of Cu/Ni Thin Film Produced by Electroplating Technique on The Variation of Electrolyte Temperature. Journal of Physics: Conference Series, 997(1), 012053. https://doi.org/0.1088/1742-6596/1373/1/012029
Wahyudi, S., Soepriyanto, S., Mubarok, M. Z., & Sutarno, S. 2019. Effect of Copper Concentration and Current Density on the Morphology of Copper Electrodeposition Deposits. Al-Kimia, 7(2), 198–207. https://doi.org/10.24252/al-kimia.v7i2.7818
Published
2023-11-30