Extraction of natural dyes from tarum leaves (Indigofera Tinctoria L.) using the Ultrasound-Assisted Extraction (UAE) method
Abstract
The rapid development of the textile industry has led to increased use of synthetic dyes. Although synthetic dyes are more practical and economical, their use can have adverse effects on health and the environment. Natural dyes are utilized as alternatives with indigo leaves (Indigofera tinctoria L.) being one source known for producing a blue color. However, the commonly used extraction methods require long extraction times and significant solvent consumption. Given the limitations of current methods, innovation is needed for an efficient extraction method that produces safe and environmentally friendly natural dyes, one of which is ultrasound-assisted extraction (UAE). Therefore, this study aims to determine the extraction process of indigo leaves using UAE method, then identify the parameters influencing the extraction process using the UAE, determine the extraction yield using UAE, assess the dyeing results of the extracted dye from indigo leaves on cotton fabric, and compare the extraction results of indigo dye through the UAE method with the addition of CaO and NaOH solutions. The results of this study indicate that the natural dye from Indigofera tinctoria obtained the best conditions at extraction time of 90 min, feed-to-solvent ratio of 0.05 g/ml, and CaO-to-solvent ratio of 0.005 g/ml. Furthermore, the addition of CaO solution obtained the highest yield at 4.25 %, while the addition of NaOH solution resulted in 4.8 %. Additionally, the analysis and test results of the application of natural dye from Indigofera tinctoria on cotton fabric revealed a darker color with the addition of NaOH solution compared to the addition of CaO solution.
References
Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., & El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11), e02711. https://doi.org/10.1016/j.heliyon.2019.e02711
Çalışkan, B., & Şayan, E. (2022). A brief overview of the effects of ultrasound on the adsorption/desorption process: a review. International Journal of Environmental Analytical Chemistry, 1–31. https://doi.org/10.1080/03067319.2022.2093641
Campos, L., Seixas, L., Dias, S., Peres, A. M., Veloso, A. C. A., & Henriques, M. (2022). Effect of Extraction Method on the Bioactive Composition, Antimicrobial Activity and Phytotoxicity of Pomegranate By-Products. Foods, 11(7), 992. https://doi.org/10.3390/foods11070992
Carreira-Casais, A., Otero, P., Garcia-Perez, P., Garcia-Oliveira, P., Pereira, A. G., Carpena, M., Soria-Lopez, A., Simal-Gandara, J., & Prieto, M. A. (2021). Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. International Journal of Environmental Research and Public Health, 18(17), 9153. https://doi.org/10.3390/ijerph18179153
Contamine, F., Faid, F., Wilhelm, A. M., Berlan, J., & Delmas, H. (1994). Chemical reactions under ultrasound: discrimination of chemical and physical effects. Chemical Engineering Science, 49(24), 5865–5873. https://doi.org/10.1016/0009-2509(94)00297-5
Delvitasari, F. (2013). Rekayasa Proses Ekstraksi dan Pembuatan Pewarna Bubuk Alami dari Mahoni (Swietenia mahagoni) dan Aplikasinya untuk Pewarnaan Tekstil. Institut Pertanian Bogor.
Dulo, B., Phan, K., Githaiga, J., Raes, K., & De Meester, S. (2021). Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. In Waste and Biomass Valorization (Vol. 12, Issue 12). Springer Netherlands. https://doi.org/10.1007/s12649-021-01443-9
Fabara, A. N., & Fraaije, M. W. (2020). An overview of microbial indigo-forming enzymes. Applied Microbiology and Biotechnology, 104(3), 925–933. https://doi.org/10.1007/s00253-019-10292-5
Helmy, H. (2020). Extraction approaches of natural dyes for textile coloration. Journal of Textiles, Coloration and Polymer Science, 0–0. https://doi.org/10.21608/jtcps.2020.30990.1037
Hsu, T. M., Welner, D. H., Russ, Z. N., Cervantes, B., Prathuri, R. L., Adams, P. D., & Dueber, J. E. (2018). Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature Chemical Biology, 14(3), 256–261. https://doi.org/10.1038/nchembio.2552
Kumar Gupta, V. (2020). Fundamentals of Natural Dyes and Its Application on Textile Substrates. In Chemistry and Technology of Natural and Synthetic Dyes and Pigments. IntechOpen. https://doi.org/10.5772/intechopen.89964
Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325
Lestari, K., & Riyanto. (2004). Pembuatan Pewarna Alam Biru Dari Indigofera tinctoria. In Dinamika Kerajinan dan Batik (Vol. 21, pp. 7–15). http://ejournal.kemenperin.go.id/dkb/article/view/110
Mansinhos, I., Gonçalves, S., Rodríguez-Solana, R., Ordóñez-Díaz, J. L., Moreno-Rojas, J. M., & Romano, A. (2021). Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants, 10(4), 582. https://doi.org/10.3390/antiox10040582
Maran, J. P., Priya, B., & Nivetha, C. V. (2015). Optimization of ultrasound-assisted extraction of natural pigments from Bougainvillea glabra flowers. Industrial Crops and Products, 63, 182–189. https://doi.org/10.1016/j.indcrop.2014.09.059
Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy, 7(3), 47. https://doi.org/10.3390/agronomy7030047
Oliveira, E., & Santos, H. M. (2016). An overview on sensing materials depending on the electromagnetic spectra region applied. Dyes and Pigments, 135, 3–25. https://doi.org/10.1016/j.dyepig.2016.07.012
Paryanto, P., Purwanto, A., & Kwartiningsih dan Endang Mastuti, E. (2012). Pembuatan Zat Warna Alami dalam Bentuk Serbuk untuk Mendukung Industri Batik di Indonesia. Jurnal Rekayasa Proses, 6(1), 26. http://www.depkes.go.id
Pattanaik, L., Naik, S. N., Hariprasad, P., & Padhi, S. K. (2021). Influence of various oxidation parameter(s) for natural indigo dye formation from Indigofera tinctoria L. biomass. Environmental Challenges, 4, 100157. https://doi.org/10.1016/j.envc.2021.100157
Prasetyo S, S. (2015). The Effect of F:S Ratio, Temperature, Particle Diameter, and Mixing Speed in The Dispersive Contact Batch Extraction of Phaleria macrocarpa Fruit Using 70%-v Ethanol Solvent. Prosiding Seminar Nasional Teknik Kimia “Kejuangan,” 2015: Prosiding SNTKK 2015, G6.1-G6.8.
Putri, A. R. W., & Nisa, F. C. (2016). Extraction Anthocyanin from the Sorted Red Rose (Rosa damascene Mill) with Microwave Assisted Extraction. Jurnal Pangan Dan AgroindustriPuri, A. R. W., & Nisa, F. C. (2016). Extraction Anthocyanin from the Sorted Red Rose (Rosa Damascene Mill) with Microwave Assisted Extraction. Jurnal Pangan Dan Agroindustri, 3(2), 701–712., 3(2), 701–712.
Rabinowitz, Y., Etinger, A., Litvak, B., Litvak, I., Yahalom, A., Cohen, H., & Pinhasi, Y. (2021). Millimeter wave spectroscopy for evaluating diamond color grades. Diamond and Related Materials, 116, 108386. https://doi.org/10.1016/j.diamond.2021.108386
Rahayuningsih, E., Fatimah, W. S., Pamungkas, M. S., & Marfitania, T. (2022). Effect of Physicochemical Process Variables on Natural Indigo Dye Production from Strobilanthes cusia Leaves by Response Surface Methodology. Indonesian Journal of Chemistry, 22(2), 342–351. https://doi.org/10.22146/ijc.68335
Rajan, A. K., & Cindrella, L. (2019). Studies on new natural dye sensitizers from Indigofera tinctoria in dye-sensitized solar cells. Optical Materials, 88, 39–47. https://doi.org/10.1016/j.optmat.2018.11.016
Reningtyas, R., Rahayuningsih, E., Kusumastuti, Y., & Kartini, I. (2022). Photofading of Natural Indigo Dye in Cotton Coated with Zinc Oxide Nanoparticles Synthesized by Precipitation Method. International Journal of Technology, 13(3), 553. https://doi.org/10.14716/ijtech.v13i3.4756
Speranza, J., Miceli, N., Taviano, M. F., Ragusa, S., Kwiecień, I., Szopa, A., & Ekiert, H. (2020). Isatis tinctoria L. (Woad): A Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies. Plants, 9(3), 298. https://doi.org/10.3390/plants9030298
Syafaatullah, Achmad Q, Variyana, Y., Rohmah, N., Mufaidah, I., & A’yun, A. Q. (2021). Optimization of Ultrasound-Assisted Extraction Parameters from Indigofera Tinctoria L using Response Surface Methodology. Journal of Research and Technology, 7(2), 175–186.
Syafaatullah, Achmad Qodim, & Mahfud, M. (2021). Optimization Extraction of Indigofera tinctoria L. using Microwave-assisted Extraction. IOP Conference Series: Materials Science and Engineering, 1053(1), 012131. https://doi.org/10.1088/1757-899x/1053/1/012131
Ustin, S. L., & Jacquemoud, S. (2020). How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. In Remote Sensing of Plant Biodiversity (pp. 349–384). Springer International Publishing. https://doi.org/10.1007/978-3-030-33157-3_14
Wang, Y., Peng, H., He, X., & Zhang, J. (2022). Cavitation bubbles with a tunable-surface-tension thermal lattice Boltzmann model. Physics of Fluids, 34(10), 102008. https://doi.org/10.1063/5.0113500
Widoretno, D., & Kunhermanti, R. (2016). Pemanfaatan Limbah Kayu Nangka (Artocarpus heterophyllus lam) Sebagai Pewarna Alami Tekstil Dengan Metode Microwave-Assisted Extraction. Institut Teknologi Sepuluh Nopember.
Zahari, N. A. A. R., Chong, G. H., Abdullah, L. C., & Chua, B. L. (2020). Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus Amboinicus Leaves: Kinetic Modeling and Optimization. Processes, 8(3), 322. https://doi.org/10.3390/pr8030322
This work is licensed under a Creative Commons Attribution 4.0 International License.