The effect of time and temperature variations on the hydrolysis of sargassum muticum using microwave irradiation in the synthesis of bioethanol as renewable energy

  • Patrisius Maryanto Bria Chemistry Study Program, Faculty of Agriculture, Science and Health, Universitas Timor, Kefamenanu, Indonesia
  • Mikson Nahak Chemistry Study Program, Faculty of Agriculture, Science and Health, Universitas Timor, Kefamenanu, Indonesia
  • Sefrinus Maria Dolfi Kolo Chemistry Study Program, Faculty of Agriculture, Science and Health, Universitas Timor, Kefamenanu, Indonesia
Keywords: bioethanol, fermentation, hydrolysis, renewable energy, sargassum muticum

Abstract

Consumption of fuel oil and the increasing population are increasing daily. The high level of energy consumption results in the oil supply reserves in the earth's bowels being depleted and will run out for the next few years. Bioethanol is ideal for replacing fossil energy because it has renewable, environmentally friendly, and renewable properties. Sargassum muticum can be converted into bioethanol because it contains monosaccharide carbohydrates such as glucose, galactose, and mannose and polysaccharides such as xylan, galactan, and mannan. The carbohydrate content of Sargassum muticum can be converted to bioethanol through a chemical hydrolysis process using a 3 % sulfuric acid catalyst and fermented with the help of Saccharomyces cerevisiae yeast with a 10 % inoculum for 6 days. The reducing sugar obtained from the hydrolysis process was analyzed by the DNS method using a UV-Vis spectrophotometer. Ethanol levels were analyzed qualitatively using potassium dichromate and quantitatively using a hand refractometer. The conversion of Sargassum muticum resulted in a reducing sugar content of 92.90 g/L at a temperature of 250 °C and a hydrolysis time of 60 minutes. The bioethanol content obtained from the fermentation of the hydrolyzed glucose was 42.32 %.

References

Agustini, N. W. S., & Febrian, N. (2019). Hidrolisis Biomassa Mikroalga Porphyridiumcruentum Menggunakan Asam (H2SO4 dan HNO3) Dalam Produksi Bioetanol. Jurnal Kimia Dan Kemasan, 41(1), 1–10.
BPS Statistics Indonesia, D. of I. S. (2023). Volume 25, Nomor 2, 2023 (Vol. 25).
Bria, P. M., & Kolo, S. M. D. (2023). Synthesis from Brown Seaweed (Sargassum sp) from Timor Island as Renewable Energy. Eksergi. Jurnal Ilmiah Teknik Kimia, 20(3), 162–167.
Bria, P. M., & Kolo, S. M. D. (2024). Sintesis Bioetanol Dari Campuran Limbah Kulit Pisang Dan Sabut Pinang Sebagai Energi Terbarukan. Jurnal Redoks, 9(1), 55–61.
Hakim, A., Chasanah, E., Uju, U., & Santoso, J. (2017). Bioethanol production from tofu waste by simultaneous saccharification and fermentation (SSF) using microbial consortium. International Journal of Technology, 8(5), 898–908. https://doi.org/10.14716/ijtech.v8i5.872
Herdini, H., Rohpanae, G., & Hadi, V. (2020). Pembuatan Bioetanol Dari Kulit Petai (Parkia Speciosa Hassk) Menggunakan Metode Hidrolisis Asam Dan Fermentasi Saccharomyces Cerevisiae. TEKNOSAINS : Jurnal Sains, Teknologi Dan Informatika, 7(2), 119–128. https://doi.org/10.37373/tekno.v7i2.9
Kolo, S. M. D., Obenu, N. M., Kefi, L., & Fuel, F. F. (2023). Optimasi Proses Hidrolisis Rumput Laut Ulva Reticulata dengan Katalis HNO3 untuk Produksi Bioetanol. Jurnal Riset Kimia, 14(1), 12–23.
Kolo, S. M. D., Obenu, N. M., & Tuas, M. Y. C. (2022). Pengaruh Pretreatment Makroalga Ulva Reticulata Menggunakan Microwave Irradiation Untuk Produksi Bioetanol. Jurnal Kimia (Journal Of Chemistry), 16(2), 212–219.
Kolo, S. M. D., Pardosi, L., & Baru, A. E. (2022). Pengaruh Waktu Hidrolisis Menggunakan Microwave Terhadap Produksi Bioetanol Dari Ampas Sorgum ( Sorghum Bicolor L .). Jurnal Ilmiah Berkala: Sains Dan Terapan Kimia, 16(1), 28–38.
Kolo, S. M. D., Presson, J., & Amfotis, P. (2021). Produksi Bioetanol sebagai Energi Terbarukan dari Rumput Laut Ulva reticulata Asal Pulau Timor. ALCHEMY Jurnal Penelitian Kimia, 17(2), 159–167. https://doi.org/10.20961/alchemy.17.2.45476.159-167
Manmai, N., Unpaprom, Y., Ponnusamy, V. K., & Ramaraj, R. (2020). Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel, 278(March), 118262. https://doi.org/10.1016/j.fuel.2020.118262
Mikulski, D., & Kłosowski, G. (2020). Microwave-assisted dilute acid pretreatment in bioethanol production from wheat and rye stillages. Biomass and Bioenergy, 136(February). https://doi.org/10.1016/j.biombioe.2020.105528
Nahak, M., Kolo, S. M. D., & Bria, P. M. (2024). Potensi Biomassa Laut Asal Pulau Timor Sebagai Bahan Baku Produksi Bioetanol Untuk Mengatasi Masalah Krisis Energi Dalam Mewujudkan Substainble Development Goals 7. Jurnal Redoks, 9(2), 121–128. https://doi.org/10.31851/redoks.v9i2.15348
Nggai, S. Y. M., Kolo, S. M. D., & Sine, Y. (2022). Pengaruh Perlakuan Awal Hidrolisis Ampas Sorgum (Sorghum Bicolor L .) terhadap Fermentasi untuk Produksi Bioetanol sebagai Energi Terbarukan Stevanny. LCHEMY : JOURNAL OF CHEMISTRY, 2(10), 33–40.
Polikovsky, M., Califano, G., Dunger, N., Wichard, T., & Golberg, A. (2020). Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): Significant for the feedstock of bioethanol production. Algal Research, 49(101945), 1–9. https://doi.org/10.1016/j.algal.2020.101945
Río, P. G. D., Domínguez, E., Domínguez, V. D., Romaní, A., Domingues, L., & Garrote, G. (2019). Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renewable Energy, 141, 728–735. https://doi.org/10.1016/j.renene.2019.03.083
Rio, P. G., Dominguez, E., Dominguez, V. D., Romani, A., Domingues, L., & Gorrate, G. (2019). Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as fi rst step of a biore fi nery. Renewable Energy An International Journal, 141, 728–735. https://doi.org/10.1016/j.renene.2019.03.083
Rahmawati, N. F. (2018). Pembuatan Bioetanol dari Rumput Laut Eucheuma Cottonii dengan Variasi Konsentrasi Asam Klorida Pada Proses Hidrolisis. Jurusan Kimia Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Mataram, 1(2), 1–10
Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501. https://doi.org/10.1016/j.rser.2016.12.076
Zhang, H., Zhang, P., Wu, T., & Ruan, H. (2023). Bioethanol Production Based on Saccharomyces cerevisiae: Opportunities and Challenges. Fermentation, 9(8), 1–14. https://doi.org/10.3390/fermentation9080709
Published
2024-07-31