Sugar content improvement by sonication in the pretreatment of empty fruit bunch hydrolysis

  • Rosalina Rosalina Department of the Renewable Energy Bioprocess Engineering Technology, Politeknik ATI Padang, West Sumatra, Indonesia
  • Dwi Kemala Putri, Mrs Department of the Phytochemistry Engineering, Politeknik ATI Padang, West Sumatra, Indonesia
  • Reni Sutri, Mrs Department of the Phytochemistry Engineering, Politeknik ATI Padang, West Sumatra, Indonesia
Keywords: delignification, empty fruit bunches, sonication

Abstract

The empty palm fruit bunches (EFB) has great potential as an alternative feedstock for bioethanol production due to its high content of cellulose and hemicellulose. However, besides cellulose and hemicellulose, EFB also contains lignin, which can hinder the hydrolysis process and therefore requires delignification. This study aims to determine the effect of sonication in alkali delignification on the sugar content of hydrolysis. Ultrasonic in 37 KHz was performed at a temperature of 80 °C. Sonication process durations ranged from 30 minutes to 150 minutes using a 10 % (w/v) NaOH solvent. The hydrolysis of EFB fibers was carried out in a water bath at 80 °C using a 0.5 N sulfuric acid solvent in a ratio of 1:20 (w/v) for 2 hours. The sugar content was measured using the phenol-sulfuric acid method with UV-Visible spectrophotometry. In this study found that the ultrasonic irradiation time length gave good results at a time limit not exceeding 90 minutes due to hemicellulose characteristics . The highest sugar content was obtained at a sonication duration of 90 minutes, measuring 20.60 mg/L, which was 38.5 % higher than alkali delignification without sonication for 150 minutes. SEM analysis indicated that EFB had undergone changes in the surface morphology and structure. Qualitative FTIR analysis showed that the hydrolysis solution contained glucose and pentose, which are products of hydrolyzed cellulose and hemicellulose.

References

Abdullah, M. A., Nazir, M. S., Raza, M. R., Wahjoedi, B. A., & Yussof, A. W. (2016). Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. Journal of Cleaner Production, 126, 686–697. https://doi.org/10.1016/j.jclepro.2016.03.107
Akhtar, N., Goyal, D., & Goyal, A. (2017). Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Conversion and Management, 141, 133–144. https://doi.org/10.1016/j.enconman.2016.06.081
Awal, P., Sudiyani, Y., Abimanyu, H., Sudiyani, Y., & Haznan Abimanyu, dan. (2016). "Optimasi Proses Optimasi Proses Perlakuan Awal NaOH Tandan Kosong Kelapa Sawit untuk menjadi Bioetanol Optimization of NaOH Alkali Pretreatment of Oil Palm Empty Fruit Bunch for Bioethanol. Terap.Indones, 18(1), 27–35. http://kimia.lipi.go.id/inajac/index.php
Darliana, I. (2021). Biodegradasi Limbah Tandan Kosong Kelapa Sawit (Elaeis guineensis Jacq.) Menggunakan Konsorsium Akteri Penghasil Enzim Selulase. Wanamukti: Jurnal Penelitian Kehutanan, 23(1), 1. https://doi.org/10.35138/wanamukti.v23i1.174
Hermansyah, H., Putri, D. N., Prasetyanto, A., Chairuddin, Z. B., Perdani, M. S., Sahlan, M., & Yohda, M. (2019). Delignification of oil palm empty fruit bunch using peracetic acid and alkaline peroxide combined with the ultrasound. International Journal of Technology, 10(8), 1523–1532. https://doi.org/10.14716/ijtech.v10i8.3464
Kanani, N., Eng, S. T. M., Banu, A., Saputro, A., Puspawati, I., & Pratama, A. A. (n.d.). Preparasi Selulosa Dari Limbah Tongkol Jagung Dengan Bantuan Gelombang Iradiasi Ultrasonik.
Kristiani, A., Effendi, N., Aristiawan, Y., Aulia, F., & Sudiyani, Y. (2015). Effect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia, 68, 195–204. https://doi.org/10.1016/j.egypro.2015.03.248
Lee, K. M., Zanil, M. F., Chan, K. K., Chin, Z. P., Liu, Y. C., & Lim, S. (2020). Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: An optimization study using artificial neural networks. Biomass and Bioenergy, 139. https://doi.org/10.1016/j.biombioe.2020.105621
Li, P., Yang, C., Jiang, Z., Jin, Y., & Wu, W. (2023). Lignocellulose pretreatment by deep eutectic solvents and related technologies: A review. In Journal of Bioresources and Bioproducts (Vol. 8, Issue 1, pp. 33–44). KeAi Communications Co. https://doi.org/10.1016/j.jobab.2022.11.00
Ofori-Boateng, C., & Lee, K. T. (2014). Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel, 119, 285–291. https://doi.org/10.1016/j.fuel.2013.11.064
Paulsen Thoresen, P., Lange, H., Rova, U., Christakopoulos, P., & Matsakas, L. (2023). Role and importance of solvents for the fractionation of lignocellulosic biomass. In Bioresource Technology (Vol. 369). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2022.128447
Quek, J. D., Lee, K. M., Lim, S., Tey, W. Y., Kang, H. S., & Quen, L. K. (2020). Delignification of oil palm empty fruit bunch via ultrasound-assisted deep eutectic solvent pretreatment. IOP Conference Series: Earth and Environmental Science, 463(1). https://doi.org/10.1088/1755-1315/463/1/012007
Rosyidin, K., Khaharudin, Y., Amin, R., Andriani, K., Maya, D., & Abstrak, M. (n.d.). Assisted Pretreatment with Microwave Heating untuk Peningkatan Kadar Selulosa Batang Pisang pada Produksi Bioetanol.
Singhal, A., Goossens, M., Konttinen, J., & Joronen, T. (2021). Effect of basic washing parameters on the chemical composition of empty fruit bunches during washing pretreatment: A detailed experimental, pilot, and kinetic study. Bioresource Technology, 340. https://doi.org/10.1016/j.biortech.2021.125734
Solihat, N. N., Sari, F. P., Risanto, L., Anita, S. H., Fitria, Fatriasari, W., & Hermiati, E. (2017). Disruption of oil palm empty fruit bunches by microwave-assisted oxalic acid pretreatment. Journal of Mathematical and Fundamental Sciences, 49(3), 244–257. https://doi.org/10.5614/j.math.fund.sci.2017.49.3.3
Subhedar, P. B., & Gogate, P. R. (2014). Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1), 216–225. https://doi.org/10.1016/j.ultsonch.2013.08.001
Sugiarto, Y., Nur Mahfut, L., Mawarda Rilek, N., Cautsarina Putri Atrinto, A., & Khotimah, M. (2014). Pengaruh Frekuensi Ultrasonik Dan Konsentrasi Naoh Pada Proses Pretreatment Bioetanol Pelepah Sawit Effect of Ultrasound Frequency and NaOH Concentration on Bioethanol Steam Palm Pretreatment Process. In Jurnal Teknologi Pertanian (Vol. 15, Issue 3).
Wiyantoko, B., Rusitasari, R., & Novia Putri, R. (2017). Identifikasi Glukosa Hasil Hidrolisis Serat Daun Nanas Menggunakan Metode Fenol-Asam Sulfat Secara Spektrofotometri Uv-Visibel.
Wu, H., Dai, X., Zhou, S. L., Gan, Y. Y., Xiong, Z. Y., Qin, Y. H., Ma, J., Yang, L., Wu, Z. K., Wang, T. L., Wang, W. G., & Wang, C. W. (2017). Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology, 241, 70–74. https://doi.org/10.1016/j.biortech.2017.05.090
Zulkiple, N., Maskat, M. Y., & Hassan, O. (2016). Pretreatment of Oil Palm Empty Fruit Fiber (OPEFB) with Aquaeous Ammonia for High Production of Sugar. Procedia Chemistry, 18, 155–161. https://doi.org/10.1016/j.proche.2016.01.024
Published
2024-03-31