Peningkatan ketangguhan dan ketahanan fatik siklus rendah pada baja ASSAB 709 M melalui proses annealing

  • Helmy Alian Teknik Mesin Fakultas Teknik Universitas Sriwijaya, Palembang – Indonesia
  • Nukman Nukman Teknik Mesin Fakultas Teknik Universitas Sriwijaya, Palembang – Indonesia
  • M. Badaruddin Teknik Mesin Fakultas Teknik Universitas Lampung, Bandar Lampung - Indonesia
  • Agung Mataram Teknik Mesin Fakultas Teknik Universitas Sriwijaya, Palembang – Indonesia
  • Qomarul Hadi Teknik Mesin Fakultas Teknik Universitas Sriwijaya, Palembang – Indonesia
Keywords: annealing, fatik, impak, ketangguhan

Abstract

Baja yang diaplikasi pada komponen-komponen mesin karena mengalami kondisi kerja yang berat dan adanya beban siklik yang lama harus memiliki kekuatan tinggi dan daktilitas yang tinggi. Penelitian ini, baja ASSAB 709 M diberi perlakuan panas annealing untuk memperbaiki sifat mekanik, perilaku fatik siklus rendah dan ketangguhan baja tersebut. Proses annealing dengan memanaskan spesimen di dalam furnace sampai temperatur austenisasi 825 °C, dengan waktu tahan 30 menit kemudian didinginkan perlahan sampai temperatur kamar . Sebelum dan sesudah proses annealing, dilakukan uji tarik, uji fatik siklus rendah (low cycle fatigue) dengan memvariasikan amplitude 0,0035 - 0,0110, impak, struktur mikro menggunakan optical microscopy(OM) dan permukaan fraktur dari spesimen dianalisis dengan menggunakan scanning electron microscopy (SEM). Struktur mikro baja ASSAB 709 M mengalami perubahan setelah annealing, dari banyaknya martensite lath menjadi terbentuknya pearlite and ferrite.. Perubahan mikrostruktur tersebut menyebabkan perubahan perilaku pada amplitudo regangan rendah dan tinggi akibat proses annealing. Peningkatan tegangan tekan dan peningkatan ketahanan kelelahan siklus rendah (low cycle fatigue) dari baja yang di annealing tergantung pada amplitudo regangan yang diterapkan.

References

Alian, H., Hadi, Q., Vidian, F., Fereza, Y., Putra. E., (2020), Peningkatan Ketangguhan dan Ketahanan Fatik Siklus Rendah (Low Cycle Fatigue) Pada Baja ASSAB 709 M Melalui Proses Normalizing
Alian, H., Saputro, D., (2018), Pengaruh perlakuan panas Quenching dan tempering Terhadap kekuatan tarik, bending, fatik dan struktur mikro pada baja AISI 6145 yg akan digunakan sebagai pegas daun.
Badaruddin, M., Sugianto, H. Wardonoa, Andokob, C.J. Wangc, A.K. Rivaid, (2019),Improvement of low-cycle fatigue resistance in AISI 4140 steel by annealing treatment, International Journal of Fatigue
Cieślak BA, Koralnik M, Kuziak R, Brynk T, Zygmunt T, Mizera J. (2019) Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels. Mater Sci Eng A;747:144–53. https://doi.org/10.1016/j.msea.2019.01.043.
Chakrabarty,I., (2017), Heat Treatment of Cast Irons, Comprehensive Materials Finishing, 2, pp. 246-287
Feng, J., Frankenbach,T., Wettlaufer, M., (2017), Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature, Materials Science & Engineering A, 683, pp. 110–115.
Gerstenmeyer, M., F. Zanger, V. Schulze,2018, Influence of Complementary Machining on fatigue strength of AISI 4140, CIRP Annals, 67(1), pp. 583-586.
Kang J, Zhang FC, Long XY, Lv B. (2016) Low cycle fatigue behavior in a medium-carboncarbide-free bainitic steel. Mater Sci Eng A;666:88–93. https://doi.org/10. 1016/j.msea.2016.03.077.
Kim, K. W, C.H. Lee, J.Y. Kang, T.H. Lee, K. M. Cho, K.H. Oh, (2016), Control of retained austenite morphology through double bain C>Hitic transformation, Materials Science and Engineering A, 673, pp. 557-561.
Kovacı, H., A. F. Yetim, Ö. Baran, A. Çelik, (2016), Fatigue crack growth behavior of DLC coated AISI 4140 steel under constant and variable amplitude loading conditions, Surface and Coatings Technology, 304, pp. 316-324.
Kovacı, H., A. F. Yetim, Ö. Baran, A. Çelik, (2016), Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: Part 1-constant amplitude loading, Materials Science and Engineering A, 672, pp. 257-264.
Lang, K.H., M. Korn, T. Rohm, (2016), Very High Cycle Fatigue Resistance of the Low Alloyed Steel 42CrMo4 in Medium- and High-Strength Quenched and Tempered Condition, Procedia Structural Integrity, 2, pp. 1133-1142.
Li, Z.C., Ding, H., Misra, R.D.K, (2017), Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments Materials Science and Engineering A, 682, pp. 211-219.
Mordyuk, B.N., G. I. Prokopenko, P. Yu. Volosevich, L. E. Matokhnyuk, A.V. Byalonovich, T.V. Popov, (2016), Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with the electric dis charge surface alloying, Materials Science and Engineering A, 659, pp.119-129.
Paul SK, Stanford N, Hilditch T.92015) Effect of martensite volume fraction on low cycle fatigue behaviour of dual phase steels: experimental and microstructural investigation. Mater Sci Eng A ;638:296–304. https://doi.org/10.1016/j.msea. 2015.04.059.
Purnadi, (2017), Evaluasi sifat fatik siklus rendah baja AISI 4140 yang dianil, Skripsi, Jurusan Teknik Mesin-Universitas Lampung.
Singh V, Raju PVSS, Namboodhiri TKG, Rao PR. (2009) Low cycle fatigue behaviour of a low-alloy high-strength steel. Int J Fatigue;12:289–92. https://doi.org/10. 1016/0142-1123(90)90457-P.
Zhou Q, Qian L, Meng J, Zhao L, Zhang F. Low-cycle fatigue behavior and microstructural
evolution in a low-carbon carbide-free bainitic steel. Mater Des 2015;85:487–96. https://doi.org/10.1016/j.matdes.2015.06.172.
Published
2021-11-01