Validasi proses kristalisasi dekstrosa monohidrat kualitas mikrobiologi sistem batch pada skala bench
Abstract
Validasi proses kristalisasi telah dilakukan untuk produksi Dekstrosa Monohidrat (DMH) kualitas mikrobiologi yang mempunyai kemurnian tinggi secara sistem batch pada skala bench kapasitas 3 - 4 kg produk. DMH tersebut banyak digunakan sebagai bahan kimia di laboratorium dan industri khususnya di bidang mikrobiologi, bioteknologi dan biofarmasi. Penelitian ini bertujuan untuk memvalidasi proses kristalisasi DMH kualitas mikrobiologi secara sistem batch. Validasi proses yang dilakukan adalah meliputi tahapan pelarutan bahan baku, kristalisasi, sentrifugasi dan pengeringan serta analisis produk. Dalam penelitian ini, proses kristalisasi dilakukan dengan parameter profil penurunan suhu secara linier, penambahan seed sebanyak 0,5% , kecepatan pengadukan 50 rpm dan waktu kristalisasi 72 jam. Hasil validasi proses produksi DMH kualitas mikrobiologi telah dilakukan sebanyak 3 kali ulangan dengan yield masing-masing adalah 54,62%, 55,66% dan 56,85%. Parameter kualitas produk ditunjukkan oleh kemurnian DMH (HPLC Area %) masing-masing adalah 99,53%, 99,61% dan 99,15 % serta parameter lainnya yang sudah memenuhi persyaratan sesuai standar produk yang ada di pasar.
References
Bosma, W.B., Schnupf, U., Willett, J.L., Momany, F.A. 2009. Density functional study of the infrared spectrum of glucose and glucose monohydrates in the OH stretch region. J. Mol Struct 905 : 59–69.
https://doi:10.1016/j.theochem.2009.03.013
Devarakonda, S., James, M. B., Evans, Allan, S., Myerson. 2003. Impact of Ultrasonic Energy on the Crystallization of Dextrose Monohydrate. Crystal Growth & Design 3 (5), 741–746
El-Yafi., AKEZ., El-Zein, H. 2014. Technical crystallization for application in pharmaceutical material engineering: Review article. Asian J Pharm Sci 10 : 283–291. https://doi: 10.1016/j.ajps.2015.03.003
Flood, A.E., Srisanga, S., 2012. An improved model of the seeded batch crystallization of glucose monohydrate from aqueous solutions. Journal of Food Engineering 109 (2), 209–217. https://doi: 10.1016/j.jfoodeng.2011.09.035
Jha, S.K., Karthika, S., Radhakrishnan, T.K. 2017. Modelling and control of crystallization process. Resour Technol 3 : 94–100. https://doi: 10.1016/j.reffit.2017.01.002
Johnson, R., Padmaja, G., Moorthy, S.N. 2009. Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques. Innov Food Sci Emerg Technol 10 : 616–620. https://doi: 10.1016/j.ifset.2009.04.001
Kartika, B.M., Khojayanti, L., Nuha., Listiana, S., Kusumaningrum, S., Wijaya, A.F. 2019. Dekstrosa Monohidrat Kualitas Farmasi Dari Pati Manihot Ecsulenta, Metroxylon Sagu, Zea Mays, Oriza Sativa, Dan Triticum. Jurnal Bioteknologi & Biosains Indonesia 6 (2), 184 – 197.
https://doi: 10.29122/jbbi.v6i2.3208
Langrish, T.A.G., Wang, E., Das, D. 2015. Solid-phase crystal growth kinetics of spray-dried glucose powders. Food and Bioproducts Processing 93 : 58–68.
https://doi:10.1016/j.fbp.2013.11.003
Li, H., Kawajiri, Y., Grover, M.A., Rousseau, R.W. 2014. Application of an empirical FBRM model to estimate crystal size distributions in batch crystallization. Crystal Growth and Design 14 (2), 607–616.
https://doi:10.1021/cg401484d
Mardawati, E., 2019. Karakterisasi produk dan pemodelan kinetika enzimatik αlfa-amilase pada produksi sirup glukosa dari pati jagung (Zea Mays). Jurnal Industri Pertanian 1 (1)
Markande, A., Fitzpatrick, J., Nezzal, A., Aerts, L., & Redl, A. 2012a. Effect of initial dextrose concentration, seeding and cooling profile on the crystallization of dextrose monohydrate. Food and Bioproducts Processing 9 : 406 – 412.
https://doi : 10.1016/j.fbp.2011.11.010
Markande, A., Nezzal, A., Fitzpatrick, J., Aerts, L., Redl, A. 2012b. Influence of impurities on the crystallization of dextrose monohydrate. Journal of Crystal Growth 353 : 145-151. https://doi 10.1016/j.jcrysgro.2012.04.021
Markande, A., Nezzal, A., Fitzpatrick, J., Aerts, L., Redl, A. 2014. Investigation of the Crystallization Kinetics of Dextrose Monohydrate Using In Situ Particle
Size and Supersaturation Monitoring. Particulate Science and Technology: An International Journal 27 (4) : 373-388
https://doi:10.1080/02726350902994050
Silva, R., do, N., Quintino, F.P., Monteiro, V.N., Asquieri, E.R. 2010. Production of glucose and fructose syrups from cassava (Manihot esculenta Crantz) starch using enzymes produced by microorganisms isolated from Brazilian Cerrado soil. Food Science Technology 30 : 213– 217.
https://doi:10.1590/s0101-20612010005000011
Srisa-Nga, S., Flood, A.E., White, E.T. 2006. The secondary nucleation threshold and crystal growth of α-glucose monohydrate in aqueous solution. Crystal Growth and Design 6 (3) : 795–801.
https://doi.org/10.1021/cg050432r
Suharno, S.M., Sudarsono, D., Rismana, E., Utami ID., Khojayanti, L., Srijanto, B., Wijaya, A.F. 2020. Validasi Proses Produksi Dektrosa Monohidrat (DMH) Farmasi pada Skala Pilot. Media Penelitian dan Pengembangan Kesehatan (30) : 4.
https://doi:10.22435/mpk.v30i4.3076
Trasi, N.S., Boerrigter, S.X.M., Byrn, S.R., Carvajal, T.M. 2011. Investigating the effect of dehydration conditions on the compactability of glucose. Int J Pharm 406 : 55–61. https://doi10.1016/j.ijpharm.2010.12.042
Widenski, D.J., Abbas, A., Romagnoli, J.A. 2011. A model-based nucleation study of the combined effect of seed properties and cooling rate in cooling crystallization. Comput Chem Eng 35 : 2696–2705.
https://doi:10.1016/j.compchemeng.2010.11.002
Zheng, Z.P., Fan, W.H., Li, H., Tang, J. 2014. Terahertz spectral investigation of
anhydrous and monohydrated glucose using terahertz spectroscopy and solidstate theory. J Mol Spectrosc 296:9–13.
https://doi:10.1016/j.jms.2013.12.002
This work is licensed under a Creative Commons Attribution 4.0 International License.